مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تاثیر پارامتر‌های مدل آشفتگی SST k-ω بر نتایج شبیه‌سازی‌ عددی انتقال حرارت در جریان آشفته درون یک لوله دارای نوار پیچ‌خورده کوتاه

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه تبدیل انرژی، دانشکده مهندسی مکانیک و انرژی، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران
10.48311/mme.2025.116763.82862
چکیده
نوارهای پیچ‌خورده کوتاه برای افزایش اختلاط جریان و انتقال حرارت در لوله‌ها به‌کار می‌روند. جریان آشفته در این لوله‌ها به لحاظ جریان‌های ثانویه و گردابه‌های مارپیچی دارای پیچیدگی‌های ویژه‌ای بوده و شبیه‌سازی‌ عددی آن‌ها‌ با استفاده از معادلات متوسط‌گیری شده رینولدز و مدل‌های دو معادله‌ای نظیر SST k-ω، به دلیل عمومیت نداشتن ضرایب این مدل‌ها، اغلب با خطا همراه است.

در این پژوهش، برای نخستین بار تاثیر پارامترهای مدل‌سازی ∞* β و عدد پرانتل آشفتگی Prt در شبیه‌سازی‌های عددی انتقال حرارت به روش SST k-ω در جریان آشفته داخل یک لوله مجهز به نوار پیچ‌خورده کوتاه در مقایسه با داده‌های تجربی مورد بررسی قرار می‌گیرد. بهبود پیش‌بینی‌های عددی دو پارامتر ضریب اصطکاک و عدد ناسلت با انتخاب مناسب پارامترهای مدل آشفتگی مورد نظر می‌باشد. نتایج نشان می‌دهند که کاهش ∞* β از 0.09 به 0.06 منجر به کاهش خطای‌ ضریب اصطکاک از 12.5% به 0.9% نسبت به داده‌های تجربی مرجع گردید. با توجه به ثابت بودن Prt، کاهش ∞* β منجر به افزایش عدد ناسلت نیز می‌گردد. تاثیر پارامتر ∞* β بر افت فشار، ساختارهای گردابه‌ای مارپیچی و شار انستروفی نیز مورد بررسی قرار گرفته است.

برای بهبود پیش‌بینی‌های انتقال حرارت، مقدار عدد پرانتل آشفتگی از 0.85 به 1.5 افزایش یافت که منجر به کاهش شار حرارتی آشفتگی و خطای شبیه‌سازی‌های عددی برای عدد ناسلت از 13.7% به 2% می‌گردد. اثر این تغییرات بر دمای دیواره نیز مورد بررسی قرار می‌گیرد. همچنین رابطه رفتار تناوبی افزایشی دمای دیواره با گردابه‌های چرخشی به وجود آمده در جریان مورد بحث قرار می‌گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of the Influence of SSTk-ω Turbulence-Model Parameters on Numerical Simulation Results of Turbulent Flow inside a Tube with a Short Twisted Tape

نویسندگان English

Erfan Navaei Malekidouz
Amin Rasam
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
چکیده English

Short twisted tapes are used to enhance mixing and heat transfer in tubes. The turbulent flow in these tubes exhibits particular complexities due to the secondary flows and helical vortices, and its numerical simulation using the Reynolds-averaged Navier–Stokes (RANS) equations with two-equation models such as the SST k-ω model often involves errors because the coefficients of these models are not universal.

It is for the first time in this study, that effects of modeling the parameter β*∞ and turbulent Prandtl number Prt on SST k-ω simulations of turbulent heat transfer in a tube fitted with a short-length twisted tape are investigated and compared with experimental data. The goal is to improve numerical predictions of two key quantities: the friction factor and the Nusselt number by choosing suitable turbulence model parameters. Reducing β*∞ from 0.09 to 0.06 decreased the simulation error in the friction factor from 12.5% to 0.9% relative to the reference experimental data. With the turbulent Prandtl number held constant, lowering β_∞^* also increased the Nusselt number. The influence of β*∞ on pressure drop, helical vortex structures, and enstrophy flux was also examined.

To improve heat-transfer predictions, the turbulent Prandtl number was raised from the default 0.85 to 1.5, which reduced the turbulent heat flux and lowered the simulation error for the Nusselt number from 13.7% to 2%. The effects of these modifications on wall temperature were analyzed, and the relationship between the periodic rise in wall temperature and the rotating vortices formed in the flow was discussed.

کلیدواژه‌ها English

Short Twisted Tape
Turbulent Swirling Flow in Pipe
Heat Transfer
SST k-&‌‌omega
Model
Modelling Parameters Prt and &‌‌beta
*&‌‌infin
[1]           R. M. Manglik, S. Maramraju, and A. E. Bergles, "The Scaling and Correlation of Low Reynolds Number Swirl Flows and Friction Factors in Circular Tubes with Twisted-Tape Inserts," vol. 8, no. 6, pp. 383-395, 2001-12-01 2001. doi: 10.1615/JEnhHeatTransf.v8.i6.30.
[2]           S. W. Chang, Y. J. Jan, and J. S. Liou, "Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape," International Journal of Thermal Sciences, vol. 46, no. 5, pp. 506518,2007/05/01/2007,
[3]           Q. Liao and M. D. Xin, "Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted-tape inserts," Chemical Engineering Journal, vol. 78, no. 2, pp. 95-105, 2000/08/01/ 2000, doi: 10.1016/S1385-8947(00)00134-0.
[4]           J. Heeraman, R. Kumar, P. K. Chaurasiya, H. Ivanov Beloev, and I. Krastev Iliev, "Experimental evaluation and thermal performance analysis of a twisted tape with dimple configuration in a heat exchanger," Case Studies in Thermal Engineering, vol. 46, p. 103003, 2023/06/01/ 2023, doi:  10.1016/j.csite.2023.103003.
[5]          M. Yilmaz, O. Comakli, S. Yapici, and O. N. Sara, "Heat transfer and friction characteristics in decaying swirl flow generated by different radial guide vane swirl generators," Energy Conversion and Management, vol. 44, no. 2, pp. 283-300, 2003/01/01/ 2003,
[6]           S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, and P. Promvonge, "Convective heat transfer in a circular tube with short-length twisted tape insert," International Communications in Heat and Mass Transfer, vol. 36, no. 4, pp. 365-371, 2009/04/01/ 2009, doi: 10.1016/j.icheatmasstransfer.2009.01.006.
[7]           S. Eiamsa-ard and P. Promvonge, "Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators," Solar Energy, vol. 78, no. 4, pp. 483-494, 2005/04/01/ 2005, doi: 10.1016/j.solener.2004.09.021.
[8]           S. N. Sarada, A. S. R. Raju, K. K. Radha, and L. S. Sunder, "Augmentation of turbulent flow heat transfer in a horizontal tube with varying width twisted tape inserts," International Journal of Automotive and Mechanical Engineering, vol. 6, pp. 797-810, 2012, doi: 10.15282/ijame.6.2012.11.0065.
[9]           R. Cazan and C. K. Aidun, "Experimental investigation of the swirling flow and the helical vortices induced by a twisted tape inside a circular pipe," Physics of Fluids, vol. 21, no. 3, p. 037102, 2009, doi: 10.1063/1.3085699.
[10]        S. Khanjani, A. Tavakoli, D. Jalali Vahid, and M. Nazari, "Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger," mdrsjrns, vol. 15, no. 11, pp. 181-190, 2016. [Online]. Available: http://mme.modares.ac.ir/article-15-9413-en.html.
[11]        T. Sarpkaya, "On stationary and travelling vortex breakdowns," Journal of Fluid Mechanics, vol. 45, no. 3, pp. 545-559, 1971,
[12]        C. K. Aidun and M. Parsheh, "Spatially periodic reversing core in a twisted-fin generated swirling pipe flow," Physics of Fluids, vol. 19, no. 6, p. 061704, 2007, doi: 10.1063/1.2738611.
[13]        F. Kreith and O. K. Sonju, "The decay of a turbulent swirl in a pipe," Journal of Fluid Mechanics, vol. 22, no. 2, pp. 257-271, 1965,
[14]        E. Smithberg and F. Landis, "Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators," Journal of Heat Transfer, vol. 86, no. 1, pp. 39-48, 1964,
[15]        S. V. Alekseenko, P. A. Kuibin, V. L. Okulov, and S. I. Shtork, "Helical vortices in swirl flow," Journal of Fluid Mechanics, vol. 382, pp. 195-243, 1999, doi: 10.1017/S0022112098003772.
[16]        R. Mehta, A. Gupta, N. Kumar, S. Eiamsa-ard, M. Pimsarn, and S. Chamoli, "Influence of perforated twisted tapes with vortex generator wings on heat transfer performance and entropy in a heat exchanger tube," International Journal of Thermal Sciences, vol. 219, p. 110192, 2026/01/01/ 2026,
[17]        A. W. Date, "Prediction of fully-developed flow in a tube containing a twisted-tape," International Journal of Heat and Mass Transfer, vol. 17, no. 8, pp. 845-859, 1974/08/01/ 1974,
[18]        Z.-M. Lin, D.-L. Sun, and L.-B. Wang, "The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape," Heat and Mass Transfer, vol. 45, no. 11, pp. 1351-1363, 2009/09/01 2009,
[19]        P. Eiamsa-ard, N. Piriyarungroj, C. Thianpong, and S. Eiamsa-ard, "A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators," Case Studies in Thermal Engineering, vol. 3, pp. 86-102, 2014/07/01/ 2014, doi: 10.1016/j.csite.2014.04.002.
[20]        R. Cazan and C. K. Aidun, "Analysis of the secondary vortices in rotating Flow induced by a twisted tape inside a pipe," (in en), Scientia Iranica, vol. 25, no. Issue 6: Special Issue Dedicated to Professor Goodarz Ahmadi, pp. 3161-3172, 2018,
[21]        A. Escue and J. Cui, "Comparison of turbulence models in simulating swirling pipe flows," Applied Mathematical Modelling, vol. 34, no. 10, pp. 2840-2849, 2010/10/01/ 2010,
[22]        Y. Kazuhisa, H. Hidetoshi, T. Saburo, and S. Chikahiro, "Numerical Simulation on Heat Transfer Enhancement in Twisted-Tape-Inserted Tubes," vol. 11, no. 4, pp. 379-390, 2004-11-04 2004,
[23]        S. Eiamsa-ard, K. Wongcharee, and S. Sripattanapipat, "3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes," International Communications in Heat and Mass Transfer, vol. 36, no. 9, pp. 947-955, 2009/11/01/ 2009,
[24]        W. Liu and B. Bai, "A numerical study on helical vortices induced by a short twisted tape in a circular pipe," Case Studies in Thermal Engineering, vol. 5, pp. 134-142, 2015/03/01/ 2015,
[25]        M. Noorbakhsh, M. Zaboli, and S. S. Mousavi Ajarostaghi, "Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger," Journal of Thermal Analysis & Calorimetry, vol. 140, no. 3, 2020,
[26]        P. Sharma and V. Kumar Patel, "Computational investigation of the thermo-fluidic effects of inserting twisted tape with alternating twists with notches," Materials Today: Proceedings, vol. 28, pp. 1968-1972, 2020/01/01/ 2020,
[27]        M. Zaboli, M. Nourbakhsh, and S. S. M. Ajarostaghi, "Numerical evaluation of the heat transfer and fluid flow in a corrugated coil tube with lobe-shaped cross-section and two types of spiral twisted tape as swirl generator," Journal of Thermal Analysis & Calorimetry, vol. 147, no. 1, 2022,
[28]        R. Cabello, A. E. Plesu Popescu, J. Bonet-Ruiz, D. Curcó Cantarell, and J. Llorens, "Heat transfer in pipes with twisted tapes: CFD simulations and validation," Computers & Chemical Engineering, vol. 166, p. 107971, 2022/10/01/ 2022,
[29]        M. Seyd Eshaghi, M. Ameri, A. Rasam, and M. Bidi, "Hydrodynamic and thermal entrance region assessment of turbulent flow through a circular tube with a tight-fit twisted tape insert, considering multifarious operating conditions and pitch ratios," Thermal Science and Engineering Progress, vol. 38, p. 101647, 2023/02/01/ 2023,  doi: 10.1016/j.tsep.2022.101647.
[30]        Y. E. Bizuneh, T. D. Kassie, E. B. Gebresilassie, and A. E. Bizuneh, "Numerical investigation on heat transfer of CuO-water nano-fluid in a circular pipe with twisted tape inserts," International Journal of Thermofluids, vol. 27, p. 101260, 2025/05/01/ 2025, doi: 10.1016/j.ijft.2025.101260.
[31]        M. H. Fagr, H. M. Hasan, and Z. M. A. Alsulaiei, "Effects of acentric twisted tape on heat transfer and flow in tubes," Case Studies in Thermal Engineering, vol. 75, p. 107263, 2025/11/01/ 2025,
[32]        P. A. C. Rocha, H. H. B. Rocha, F. O. M. Carneiro, M. E. Vieira da Silva, and A. V. Bueno, "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, vol. 65, pp. 412-418, 2014/02/01/ 2014,
[33]        N. Sakamoto, T. Hino, H. Kobayashi, and K. Ohashi, "Parameter adaptation of k − ω SST turbulence model for improving resolution of moderately separated flows around 2D wing and 3D ship hulls via EnKF data assimilation," Journal of Marine Science and Technology, vol. 29, no. 4, pp. 885-909, 2024/12/01 2024, doi: 10.1007/s00773-024-01026-y.
[34]        F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, vol. 32, no. 8, pp. 1598-1605, 1994, doi: [35]         F. Menter, "Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows," in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, (Fluid Dynamics and Co-located Conferences: American Institute of Aeronautics and Astronautics, 1993. doi: 10.2514/3.12149.
[36]        J. Jeong and F. Hussain, "On the identification of a vortex," Journal of Fluid Mechanics, vol. 285, pp. 69-94, 1995, doi: 10.1017/S0022112095000462.
[37]        Pope, S. B. (2000). Turbulent Flows. Cambridge University Press. doi: 10.1017/CBO9780511840531