مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مشخصه یابی سرامیک نیترید تیتانیم – پنج درصد وزنی تیتانیم و شبیه‌سازی رفتار مکانیکی آن بر اساس آنالیز نانوفرورونده

نوع مقاله : مقاله پژوهشی

نویسندگان
1 گروه علوم مهندسی، دانشکده فن آوری‌های نوین، دانشگاه محقق اردبیلی،اردبیل، ایران.
2 گروه مهندسی متالورژی و مواد، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران.
10.48311/mme.2025.96891.0
چکیده
در این مطالعه سعی شده است تا تأثیر افزودن 5 درصد وزنی تیتانیم به طور جامع بر مشخصات ریزساختاری، خواص مکانیکی و فیزیکی سرامیک بر پایه نیترید تیتانیم بررسی گردد. تف‌جوشی (sintering) سرامیک TiN-5wt%Ti با استفاده از فرایند تف‌جوشی پلاسمای جرقه‌ای (SPS) در اتمسفر خلأ، تحت فشار 50 مگاپاسکال، در دمای 1900 درجه سانتی‌گراد به مدت 7 دقیقه انجام گرفت. نتایج به دست آمده نشان دادند که عدم ترشوندگی کافی بین ذرات افزودنی تیتانیم و فاز زمینه نیترید تیتانیم و به دام افتادن گازهای ناشی از واکنش‌های احتمالی بین ذرات و اکسیژن باقی‌مانده در طول فرایند تف‌جوشی‌، دلایلی برای چگالی نسبی 5/92 درصد بوده‌اند. تشکیل فاز اکسید تیتانیم در طول تف‌جوشی طبق واکنش‌های تیتانیم با نیترید تیتانیم و اکسیژن باقی‌مانده با استفاده از نتایج میکروسکوپ الکترونی روبشی (FESEM)، پراش پرتو ایکس (XRD) و ارزیابی‌های ترمودینامیکی تأیید شد. طبق نتایج آزمایشگاهی آزمون نانوفرورونده (Nanoindentation)، حداکثر سختی و مدول الاستیک در نرخ بارگذاری تا 8/0 میلی‌نیوتن بر ثانیه حاصل گردید. علاوه بر آن، رویدادهای pop-in در منحنی‌های آزمون نانوفرورونده به دلیل تشکیل ریزترک‌ها و جوانه‌زنی نابجایی‌ها در نواحی فرورفتگی مشاهده شدند. همچنین، شبیه‌سازی المان محدود آزمون نانوفرورونده با استفاده از نرم‌افزار آباکوس (Abaqus) در همان نرخ‌های بارگذاری تجربی یعنی 2/0، 4/0 و 8/0 میلی‌نیوتن بر ثانیه انجام شد، تطابق قابل توجهی بین یافته‌های آزمایشگاهی با نتایج شبیه‌سازی حاصل شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Characterization of TiN-5wt%Ti Ceramic and Simulation of its Mechanical Behavior Based on Nanoindentation Analysis

نویسندگان English

Mehrdad sheikhlou 1
Ramin Meshkabadi 1
Shahin Keyvani Somarin 2
Abbas Sabahi namini 1
1 Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran.
2 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده English

In this study, an attempt has been made to comprehensively investigate the effect of adding 5 wt% titanium on the microstructural characteristics, mechanical and physical properties of titanium nitride-based ceramics. The sintering of TiN-5wt%Ti ceramics was carried out using the spark plasma sintering (SPS) process in a vacuum atmosphere, under a pressure of 50 MPa, at a temperature of 1900 °C for 7 minutes. The results showed that the lack of sufficient wettability between the titanium additive particles and the titanium nitride matrix phase and the trapping of gases resulting from possible reactions between the particles and residual oxygen during the sintering process were the reasons for the relative density of 92.5%. The formation of the titanium oxide phase during sintering was confirmed by the reactions of titanium with titanium nitride and residual oxygen using the results of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and thermodynamic evaluations. According to the laboratory results of nanoindentation test, the maximum hardness and Young's modulus were obtained at loading rates up to 0.8 mN/s. In addition, pop-in events were observed in the nanoindentation test curves due to the formation of microcracks and dislocation nucleation in the indentation areas. Also, finite element simulation of the nanoindentation test was performed using Abaqus software at the same experimental loading rates, i.e. 0.2, 0.4 and 0.8 mN/s, and a significant agreement was obtained between the laboratory findings and the simulation results

کلیدواژه‌ها English

Titanium nitride, nanoindentation, ceramic, simulation, microstructure
[1] D. Medveď, J. Balko, R. Sedlák, A. Kovalčíková, I. Shepa, A. Naughton-Duszová,V et al., “Wear resistance of ZrB2 based ceramic composites,” International Journal of Refractory Metals and Hard Materials, Vol. 81, pp. 214-224, 2019. DOI:10.1016/j.ijrmhm.2019.03.004.
[2] F. Jalali, M. Ghatee, S.M. Hashemian, Effect of TiN/TiCN/Al2O3 multilayer coating on Tungsten Carbide drill on drilling process of spherodized cast iron, Modares Mechanical Engineering Vol.15, No.12, pp.443-449, 2015.
[3] S. Nekahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, M. Shahedi Asl, M. Shokouhimehr, “A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2,” Ceramics International, Vol. 45, no. 18, pp. 24060-24069.
[4] S. Nekahi, F. Sadegh Moghanlou, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, “Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers,” International Journal of Refractory Metals and Hard Materials, Vol. 82, pp. 129-135, 2019.
[5] K. Vaferi, S. Nekahi, M. Vajdi, F. Sadegh Moghanlou, M. Shokouhimehr, "Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade," Ceramics International, vol. 45, no. 15, pp. 19331-19339, 2019. DOI: 10.1016/j.ceramint.2019.06.184.
[6] F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, "Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma," Ceramics International, vol. 45, no. 5, pp. 5306-5311, 2019. DOI:10.1016/j.ceramint.2018.11.228.
[7] A. Sabahi Namini, Z. Ahmadi, A. Babapoor, M. Shokouhimehr, M. Shahedi Asl, "Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC," Ceramics International, vol. 45, no. 2, pp. 2153-2160, 2019.
[8] M. Shahedi Asl, Z. Ahmadi, A. Sabahi Namini, A. Babapoor, A. Motallebzadeh, "Spark plasma sintering of TiC–SiCw ceramics," Ceramics International, vol. 45, no. 16, pp. 19808-19821, 2019. DOI: 10.1016/j.ceramint.2019.06.236.
[9] S. Nekahi, M. Vajdi, F.S. Moghanlou, K. Vaferi, A. Motallebzadeh, M. Ozen, et al., "TiB2–SiC-based ceramics as alternative efficient micro heat exchangers," Ceramics International, vol. 45, no. 15, pp. 19060-19067, 2019. DOI: 10.1016/j.ceramint.2019.06.150.
[10] M. Shahedi Asl, S.A. Delbari, F. Shayesteh, Z. Ahmadi, A. Motallebzadeh, "Reactive spark plasma sintering of TiB2–SiC–TiN novel composite," International Journal of Refractory Metals and Hard Materials, vol. 81, pp. 119-126, 2019. DOI: 10.1016/j.ijrmhm.2019.02.022.
[11] M. Vajdi, F. Sadegh Moghanlou, E. Ranjbarpour Niari, M. Shahedi Asl, M. Shokouhimehr, "Heat transfer and pressure drop in a ZrB2 microchannel heat sink: a numerical approach," Ceramics International, vol. 46, no. 2, pp. 1730-1735, 2020. DOI: 10.1016/j.ceramint.2019.09.146.
[12] M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, F. Pishgar, M. Shokouhimehr, M. Shahedi Asl, "The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool," Ceramics International, vol. 45, no. 17, pp. 22196-22202, 2019. DOI: 10.1016/j.ceramint.2019.07.241.
[13] F. Sadegh Moghanlou, M. Vajdi, A. Motallebzadeh, J. Sha, M. Shokouhimehr, M. Shahedi Asl, "Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade," Ceramics International, vol. 45, no. 14, pp. 17742-17750, 2019. DOI: 10.1016/j.ceramint.2019.05.344.
[14] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, I. Farahbakhsh, Z. Balak, "Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron-and nano-sized SiC particulates," Ceramics International, vol. 44, no. 10, pp. 11431-11437, 2018. DOI: 10.1016/j.ceramint.2018.03.202.
[15] R. Tu, P. Zhu, S. Zhang, P. Xu, L. Zhang, H. Hanekawa, T. Goto, "Comparison of CVD-deposited Ni and dry-blended Ni powder as sintering aids for TiN powder," Journal of the European Ceramic Society, vol. 34, no. 8, pp. 1955-1961, 2014.
[16] P. Xiao, B. Derby, "Wetting of titanium nitride and titanium carbide by liquid metals," Acta materialia, vol. 44, no. 1, pp. 307-314, 1996. DOI: 10.1016/1359-6454 (95)00165-0
[17] H. Nakayama, K. Ozaki, "Effect of mechanical milling of elemental powders on interface formation in TiN–Ni cermets prepared by pulsed current sintering," International Journal of Refractory Metals and Hard Materials, vol. 51, pp. 309-314, 2015.
[18] R. Daniel, M. Meindlhumer, J. Zalesak, B. Sartory, A. Zeilinger, C. Mitterer, J. Keckes, "Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: a micromechanical proof for CrN/Cr and TiN/SiOx multilayers," Materials & design, vol. 104, pp. 227-234, 2016. DOI: 10.1016/j.matdes.2016.05.029
[19] M.L. Gu, C.Z. Huang, B. Zou, B.Q. Liu, "Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials," Materials Science and Engineering: A, vol. 433, no. 1-2, pp. 39-44, 2006. DOI: 10.1016/j.msea.2006.07.012
[20] C.H. Lee, H.H. Lu, C.A. Wang, P.K. Nayak, J.L. Huang, "Microstructure and mechanical properties of TiN/Si3N4 nanocomposites by spark plasma sintering (SPS)," Journal of alloys and compounds, vol. 508, no. 2, pp. 540-545, 2010. DOI: 10.1016/j.jallcom.2010.08.116
[21] M. Kitiwan, A. Ito, T. Goto, "Spark plasma sintering of TiN–TiB2–hBN composites and their properties," Ceramics International, vol. 41, no. 3, pp. 4498-4503, 2015. DOI: 10.1016/j.ceramint.2014.11.144
[22] L. Wang, W. Jiang, L. Chen, M. Yang, and H. Zhu, "Consolidation of Nano‐Sized TiN Powders by Spark Plasma Sintering," Journal of the American Ceramic Society, vol. 89, no. 7, pp. 2364-2366, 2006.  DOI: 10.1111/j.1551-2916.2006.01066.x
[23] V.-H. Nguyen et al., "Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics," Ceramics International, vol. 47, no. 9, pp. 12459-12466, 2021.  DOI: 10.1016/j.ceramint.2021.01.103
[24] V.-H. Nguyen et al., "Effects of SiC on densification, microstructure and nano-indentation properties of ZrB2–BN composites," Ceramics International, vol. 47, no. 7, pp. 9873-9880, 2021. DOI: 10.1016/j.ceramint.2020.12.129
[25] H.Yu, A.S. Namini, S.A. Delbari, M. Sheikhlou, A. Abdolmaleki, S. Jung, J. Lee, J. Wang, Q. Van Le, S.Y. Kim, and H.W. Jang, "Nanoindentation and TEM investigation of spark plasma sintered TiB2–SiC composite," Ceramics International, vol. 48, no. 14, pp. 20285-20293, 2022. DOI: 10.1016/j.ceramint.2022.03.309
[26] V. H. Nguyen, S. A. Delbari, M. S. Asl, Q. Van Le, M. Shokouhimehr, M. Mohammadi,  & A. S. Namini, "Synergistic effects of Si3N4 and CNT on densification and properties of TiC ceramics," Ceramics International, vol. 47, no. 9, pp. 12941-12950, 2021. DOI: 10.1016/j.ceramint.2021.01.157
[27] I. Khobta, O. Petukhov, O. Vasylkiv, Y. Sakka, and A. Ragulya, "Synthesis and consolidation of TiN/TiB2 ceramic composites via reactive spark plasma sintering," Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1601-1606, 2011. DOI: 10.1016/j.jallcom.2010.10.198
[28] S. Kawano, J. Takahashi, and S. Shimada, "Spark plasma sintering of nano‐sized TiN prepared from TiO2 by controlled hydrolysis of TiCl4 and Ti (O‐i‐C3H7) 4 solution," Journal of the American Ceramic Society, vol. 86, no. 9, pp. 1609-1611, 2003. DOI: 10.1111/j.1151-2916.2003.tb03524.x
[29] H. Elmkhah, A. Abdollah-zadeh, F. Mahboubi, A. Sabour rohaghdam, K.H. Kim, Qualitative evaluation of mechanical properties of nanostructured TiAlN coatings deposited on cutting tools by analysis of XRD results, Modares Mechanical Engineering, Vol. 14, No. 12, pp. 61-66, 2014.
[30] D. Sun, T. Sun, Q. Wang, X. Han, Q. Guo and G. Wu, “Fabrication of in situ Ti2AlN/TiAl composites by reaction hot pressing and their properties,” Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 29, no. 1, pp.126-130, 2014. DOI: 10.1007/s11595-014-0879-6
[31] Z.J. Lin, M.J. Zhuo, M.S. Li, J.Y. Wang and Y.C. Zhou, “Synthesis and microstructure of layered-ternary Ti2AlN ceramic,” Scripta materialia, vol. 56, no. 12, pp.1115-1118, 2007. https://doi.org/10.1016/J.MSEA.2004.04.070
[32] A.C. Fischer-Cripps, “A simple phenomenological approach to nanoindentation creep,” Materials Science and Engineering: A, vol. 385, no. 1-2, pp. 74-82, 2004.
[33] S. R. Kalidindi, and S. Pathak, “Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves,” Acta Materialia, vol. 56, no. 14, pp. 3523-3532, 2008. DOI: 10.1016/j.actamat.2008.03.036
[34] Hao Yu, Mohammad Sadegh Shakeri, Shahin Keyvani Somarin, Mehrdad Sheikhlou, Abbas Sabahi Namini, Joo Young Park, Sunghoon Jung, Ho Won Jang, Quyet Van Le, Dokyoon Kim, Zaneta Swiatkowska-Warkocka, Mohammadreza Shokouhimehr, Comprehensive characterization of spark plasma sintered ZrB2-SiCp-SiCw composite and its corresponding orthogonal cutting simulation, Journal of Alloys and Compounds, Volume 1006, 2024, 176123, ISSN 0925-8388, DOI: 10.1016/j.jallcom.2024.176123
[35] B. Bor, D. Giuntini, B. Domènech, M.V. Swain, and G.A. Schneider, “Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites,” Journal of the European Ceramic Society, vol. 39, no. 10, pp.3247-3256, 2019.
 [36] V. Fauvel, Y. Gaillard, R. Guillemet, P. Garabédian, and F. Richard, “Numerical and experimental crossed analysis of coated nanostructures through nanoindentation,” International Journal of Mechanical Sciences, vol. 245, pp.108091, 2023. DOI: 10.1016/j.ijmecsci.2022.108091
[37] Y. Yang, R. Peng, J. Li, X. Chen, H. Zhang,  J. Zhao, Y. He, and Z. Liu, “Elastic-plastic properties of ceramic matrix composites characterization by nanoindentation testing coupled with computer modeling,” Ceramics International, 50(11), pp.18540-18548, 2024.  DOI: 10.1016/j.ceramint.2024.02.338
[38] H. Wang, Z. Huang, J. Deng, D. He, J. Qi, and T. Lu, “Stress-strain relationship of translucent nanocrystalline Gadolinium Zirconate ceramic with grain size below 10 nm using nanoindentation,” Ceramics International, vol. 46, no. 6, pp.8490-8494, 2020. DOI: 10.1016/j.ceramint.2019.12.029
[39] J.L. Amorós, E. Blasco, A. Moreno, and C. Feliu, “Mechanical properties obtained by nanoindentation of sintered zircon–glass matrix composites,” Ceramics International, vol. 46, no. 8, pp.10691-10695, 2020.
[40] M. Ji, J. Xu, L. Li, D. Yu, M. Chen, and M. El Mansori, “Nano-scale mechanical behaviors and material removal mechanisms of zirconia ceramics sintered at various temperatures,” Ceramics International, vol. 47, no. 23, pp.32588-32598, 2021. DOI: 10.1016/j.ceramint.2021.08.154
[41] X. Jin, X. Wang, L. Liu, Y. Yin, H. Wang, B. Zhang and X. Fan, “Strain rate effect on the mechanical properties of ZrB2-SiC ceramics characterized by nanoindentation,” Ceramics International, vol. 48, no. 7, pp. 10333-10338, 2022. DOI: 10.1016/j.ceramint.2022.01.331
[42] A.L. Rominiyi, and P.M. Mashinini,” Nanoindentation study of mechanical and wear properties of spark plasma sintered Ti-6Ni-xTiCN composites,” Ceramics International, vol. 49, no. 2, pp.2194-2203, 2023. DOI: ceramint.2022.09.186
[43] A. Shanaghi, A. Siyavoshi, A.R. Souri, A. Shanaghi, and P.K. Chu, “Study of the Mechanical Properties of NiTi Modified by Carbon Plasma Immersion Ion Implantation Using Nano-Indentation Test and Finite Element Method Simulation,” Physics of Metals and Metallography, vol. 123, no. 13, pp.1395-1401, 2022. DOI: 10.1134/S0031918X21100574
 [44] P. Xiao, A. Roy, and X. Wang, "In-silico simulation of nanoindentation on bone using a 2D cohesive finite element model," Journal of the Mechanical Behavior of Biomedical Materials, vol. 151, p. 106403, 2024. DOI: 10.1016/j.jmbbm.2024.106403
[45] H. Li, J. Chen, Q. Chen, and M. Liu, "Determining the constitutive behavior of nonlinear visco-elastic-plastic PMMA thin films using nanoindentation and finite element simulation," Materials & Design, vol. 197, p. 109239, 2021. DOI: 10.1016/j.matdes.2020.109239
[46] G. Anstis, P. Chantikul, B. R. Lawn, and D. Marshall, "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements," Journal of the American ceramic society, vol. 64, no. 9, pp. 533-538, 1981. DOI: 10.1111/j.1151-2916.1981.tb10320.x
[47] A. Bolshakov, W. Oliver, and G. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations," Journal of Materials Research, vol. 11, no. 3, pp. 760-768, 1996. DOI: 10.1557/JMR.1996.0092
[48] J. Knapp, D. Follstaedt, S. Myers, J. Barbour, and T. Friedmann, "Finite-element modeling of nanoindentation," Journal of Applied Physics, vol. 85, no. 3, pp. 1460-1474, 1999. DOI: 10.1063/1.369178
 [49] A. Bolshakov, W. Oliver, and G. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations," Journal of Materials Research, vol. 11, no. 3, pp. 760-768, 1996. DOI: 10.1557/JMR.1996.0092
[50] A. Dias and G. Godoy, "Determination of stress-strain curve through Berkovich indentation testing," in Materials Science Forum, 2010, vol. 636: Trans Tech Publ, pp. 1186-1193. DOI: 10.4028/www.scientific.net/MSF.636-637.1186
[51] M. S. Libório, A. M. d. S. Dias, and R. M. Souza, "Determination of film thickness through simulation of vickers hardness testing," Materials Research, vol. 20, no. 3, pp. 755-760, 2017. DOI:10.1590/1980-5373-MR-2015-0783
 [52] M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, "Simulation of Berkovich nanoindentation experiments on thin films using finite element method," Thin solid films, vol. 312, no. 1-2, pp. 240-248, 1998. DOI:10.1016/S0040-6090(97)00739-6
[53] A. Bhattacharya and W. Nix, "Finite element simulation of indentation experiments," International Journal of Solids and Structures, vol. 24, no. 9, pp. 881-891, 1988. DOI:10.1016/0020-7683(88)90039-X