مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی اثر جایگزینی نیتروژن با ترکیب هلیوم-دی‌اکسیدکربن بر احتراق موتور دیزل

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران
10.48311/mme.2025.96828.0
چکیده
یکی از مشکلات موتورهای دیزل سیکل بسته، افت فشار احتراق و در اثر آن کاهش توان موتور است. در کار حاضر، حل این مساله در یک موتور نمونه با استفاده از دینامیک سیالات محاسباتی مورد بررسی واقع شد. این کار به وسیله تزریق هلیوم به مخلوط گازهای ورودی محقق میشود. این مخلوط شامل بازچرخش دی‌اکسیدکربن از محصولات و تزریق اکسیژن است. اساس کار موتورهای سیکل بسته بر انجامEGR  است. هرچه درصد EGR بیشتر باشد نیاز به مقدار کمتری از گازهایی مانند نیتروژن است که در واکنش‌های شیمیایی کم‌اثر هستند. لذا راهبرد کار حاضر استفاده از بیشترین درصد EGR ممکنه است. نتایج حاکی از آن است که در حالتی که هلیوم دارای کسر جرمی 4.6 الی 11.7% و دی‌اکسیدکربن 73 الی 66% باشد پس از احتراق افت فشار و توان ایجاد شده و جهت رفع آن نیاز به تغییر نسبت جرمی اکسیژن به سوخت است. در مجموع هرچه مقدار هلیوم افزایش یافته (تا کسر جرمی %20) فشار قله افزایش یافته ولی به مقدار مطلوب نرسیده است و نرخ آزاد سازی گرما کاهشی است؛ اما در کسر جرمی %39 فشار قله از مقدار مطلوب بیشتر می‌شود ولی احتراق شکل نمی‌گیرد، این افزایش فشار صرفا حاصل از حرکت پیستون است. با تغییر نسبت اکساینده به سوخت از 16.5 به 11.5 و هلیوم با کسر جرمی 9.5% و 67% EGR تغییرات فشار با حالت مطلوب تطابق می‌یابد. در این حالت مصرف سوخت ویژه نسبت به تمام حالات حتی حالت مطلوب کمتر است و توان تولیدی از حالت مطلوب بیشتر است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical study of the effect of replacing nitrogen with helium-carbon ‎dioxide on diesel engine combustion

نویسندگان English

Seyed Safdar Taghavi Khesal
amin jalalian
Mahmoud Salari
Mojtaba Barzegar Rahimi
Department of Mechanical Engineering, Faculty of Engineering, Imam Hossein University, Tehran, Iran.
چکیده English

One of important problems of closed-cycle diesel engines is the drop in combustion pressure and engine power. In the present work the solution in a typical engine using CFD has been investigated. This is achieved by injecting helium into inlet gas mixture. This mixture involves recycling CO2 from the products and injecting oxygen. The basis of closed-cycle engines is EGR. The higher the %EGR, the smaller amount of gases such as nitrogen, which are less effective in chemical reactions. Therefore, the strategy of present work is to use the highest possible %EGR. Results indicate that in the case where helium has a mass fraction of 4.6 to 11.7% and CO2 has a mass fraction of 73 to 66%, after combustion, pressure and power drops occur, and to eliminate them, it is necessary to change o/f ratio. In general, as the amount of helium increases (up to a mass fraction of 20%), the peak pressure increases but does not reach the desired value, and the heat release rate decreases; however, at a mass fraction of 39%, the peak pressure exceeds the desired value, but combustion does not occur, this increase in pressure is the result of piston movement. By changing the o/f ratio from 16.5 to 11.5 and helium with a mass fraction of 9.5% and 67% EGR, the pressure variation matches the desired state. In this case, sfc is lower than in all cases, even the desired case, and the power output is higher than the desired case.

کلیدواژه‌ها English

Closed Cycle Diesel Engine, Combustion Simulation, Carbon Dioxide, Helium
[1] J.B. Heywood, Internal Combustion Engine Fundamentals, vol. 930, Mcgraw-hill, New York, 1988, doi: 10.5860/choice.26-0943.
[2] A. Maghbouli et al, An advanced combustion model coupled with detailed chemical reaction mechanism for DI diesel engine simulation, Appl. Energy 111:758–770, 2013, doi: 10.1016/j.apenergy.2013.05.031.
[3] W. Xiao-wu, Analysis of technology condition and development trend for Air Independent Propulsion (AIP) technology for conventional submarine, Ship Sci. Technol., 1: 049, 2009.
[4] T. Ura, T. Obara, S. Takagawa, T. Gamo, Exploration of Teisi Knoll by autonomous underwater vehicle, "R-One robot", An Ocean Odyssey, Conference Proceedings (IEEE Cat. No. 01CH37295), Vol. 1, pp. 456-461, 2001, doi: 10.1109/oceans.2001.968767.
[5] G. Reader, I. Potter, J. Hawley, Underwater heat engines-state of the art, American Society of Mechanical Engineers 92 Emerging Energy Sources Technology Conference, University of Bath, 1992.
[6] A. Mendez, T.J. Leo, M.A. Herreros, Current state of technology of fuel cell power systems for autonomous underwater vehicles, Energies, 7.7: 4676-4693, 2014, doi: 10.3390/en7074676.
[7] A. Fowler, A closed-cycle diesel engine for underwater work, 1983.
[8] A. Fowler, Hybrid computer simulation and validation of a closed cycle diesel engine, Proceedings of UKSC Conference on Computer Simulation, Bath University, 1984, doi: 10.1016/b978-0-408-01504-2.50042-9.
[9] A.M. Nour, Theoretical and Experimental Study on Diesel Engine Performance Under Synthetic Atmosphere for Recycle Operation, thesis, 1997.
[10] E.M. Marzouk, A. M. Nour, M. A. Awwad, A.I. Abdel-fattah, Theoretical and Experimental Study on Diesel Engine Performance Under Synthetic Atmosphere for Recycle Operation, the 8th ASAT Conference, pp. 117–123, 1999, doi: 10.21608/asat.1999.24879.
[11] R. Shaw, H. Oman, Non-air working fluids for closed-cycle diesel engines, Intersoc. Energy Convers. Eng. Conf, The Boeing Company, United States, Seattle, Washington, 1983.
[12] H.W. Wu, Z.Y. Wu, J.Y. Yang, R.H. Wang, W.H. Lin, Combustion characteristics of a closed cycle diesel engine with different intake gas contents, Appl. Therm. Eng, 29.5-6: 848-858, 2009, doi: 10.1016/j.applthermaleng.2008.04.015.
[13] A.M. El Ela, Y.A. Eldrainy, M.M. Elkasaby, A.M. Nour, Effect of replacing nitrogen with helium on a closed cycle diesel engine performance, Alexandria Engineering Journal, 55(3), 2016, doi: 10.1016/j.aej.2016.05.023.
[14] C. Zhao, K. Wang, S. Huang, Numerical Investigation on Effects of Oxygen-Enriched Air and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine, SAE Technical Paper, 2018, doi: 10.4271/2018-01-1788.
[15] N.M. Taib, M.R.A. Mansor, W.M.F.W. Mahmood, Combustion characteristics of hydrogen in a noble gas compression ignition engine, Energy Reports, 7: 200-218, 2021, doi: 10.1016/j.egyr.2021.07.133.
[16] M.S. Gad, Z. He, A.S. El-Shafay, A.I. EL-Seesy, Combustion characteristics of a diesel engine running with Mandarin essential oil-diesel mixtures and propanol additive under different exhaust gas recirculation, Experimental investigation and numerical simulation, Case Studies in Thermal Engineering, 26: 101100, 2021, doi: 10.1016/j.csite.2021.101100.
[17] AVL FIRE User guides, 2021.
[18] A. jalalian, K. Mazaheri, Comparison of some global chemical kinetics effects on methane lifted flame 3D simulation, Modares Mechanical Engineering, 17 (8) :105-116, 2017, doi: 20.1001.1.10275940.1396.17.8.40.4.
[19] Liu, A.B. and Reitz, R. D., Modeling the Effects of Drop Drag and Break-up on Fuel Sprays, SAE 930072, (1993), doi: 10.4271/930072.
[20] Dukowicz, J.K. A Particle-Fluid Numerical Model for Liquid Sprays, J. Comp. Physics, 35, 229-253,1980, doi: 10.1016/0021-9991(80)90087-x.
[21] J.D. Naber, R.D., Reitz, Modeling engine spray/wall impingement, SAE transactions, pp.118-140, 1988, doi: 10.4271/880107.
[22] Launder, B., & Spalding, D. B. Turbulence modelling. Com. Mech. Appl. Mech. Eng3(2), 269, 1974.
دوره 26، شماره 2
بهمن 1404
صفحه 119-128