مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

حل عددی خمش پوسته کامپوزیتی انعطاف ­پذیر مورد استفاده در بال مورفینگ به روش بدون شبکه ­ی درونیابی نقاط شعاعی و مقایسه با نتایج تجربی

نوع مقاله : مقاله پژوهشی

نویسندگان
دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی هوافضا، تهران، ایران
10.48311/mme.2025.96923.0
چکیده
در این مقاله خمش یک پوسته کامپوزتی انعطاف‌پذیر(ماتریس الاستومر) مورد استفاده در پوسته بال مورفینگ به روش عددی مورد آنالیز قرار گرفته است و نتایج حاصل از حل عددی با یک مقاله معتبر که بصورت تجربی برروی خمش این پوسته تحقیقی انجام شده، مقایسه شده‌است. در ابتدا معادلات حاکم با استفاده از روش حداقل انرژی پتانسیل کل و معادلات اویلر-لاگرانژ استخراج شده است که شامل معادلات دیفرانسیل بشدت غیرخطی می‌باشند، جهت گسسته سازی این معادلات از روش بدون شبکه درونیابی نقاط شعاعی به فرم قوی استفاده شده است و همچنین از روش نیوتن-رافسون جهت حل عددی معادلات غیر خطی بهره برده‌شده است. شرایط مرزی بصورت گیردار در چهار طرف درنظر گرفته شده است. در این تحلیل تاثیر نیروهای پیش کشش و همچنین بارهای خارج ازصفحه در میزان جابجایی حداکثر پوسته کامپوزیتی بررسی شده است. مقایسه نتایج حل به روش عددی بدون شبکه با نتایج تجربی نشان داد که حل به روش مذکور از دقت خوبی برخوردار است واختلاف اندکی با نتایج تجربی دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Simulation of Flexible Composite Skin Bending in Morphing Wings Using the Radial Point Interpolation Mesh free Method: Comparison with Experimental Results

نویسندگان English

morteza Shakibaseresht
Mahmood Zabihpoor
keramat malekzadeh
jafar eskandari jam
Aerospace Engineering Department, Malek Ashtar University of Technology, Tehran, Iran
چکیده English

In this study, the bending of a flexible composite shell (with an elastomeric matrix) used in a morphing wing skin is analyzed numerically, and the numerical results are compared with those of a reputable experimental study conducted on the bending behavior of this shell. First, the governing equations are derived using the total potential energy minimization method and the Euler–Lagrange equations, resulting in highly nonlinear differential equations. To discretize these equations, the strong-form meshfree Radial Point Interpolation Method(RPIM) is employed, and the Newton–Raphson method is used to obtain the numerical solution of the nonlinear equations. The boundary conditions are considered clamped on all four edges. In this analysis, the effects of pretension forces as well as out-of-plane loads on the maximum displacement of the composite shell are investigated. Comparison of the meshfree numerical results with the experimental data shows that the proposed numerical solution has good accuracy and exhibits only a small deviation from the experimental results

کلیدواژه‌ها English

Mesh Free Method
Strong Form
Shape Function
Influence Domain

 

[1] J. N. Kudva, "Overview of the DARPA smart wing project," Journal of intelligent material systems and structures, vol. 15, no. 4, pp. 261-267, 2004. doi:10.1177/1045389X04042796
[2]           A. E. Rivero, P. M. Weaver, J. E. Cooper, and B. K. Woods, "Parametric structural modelling of fish bone active camber morphing aerofoils," Journal of Intelligent Material Systems and Structures, vol. 29, no. 9, pp. 2008-2026, 2018. doi: 10.1177/1045389X18758182
[3] S. Ameduri and A. Concilio, "Morphing wings review: Aims, challenges, and current open issues of a technology," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 237, no. 18, pp. 4112-4130, 2023.doi: 10.1177/0954406220944423
[4]           T.-W. Liu, J.-B. Bai, S.-L. Li, and N. Fantuzzi, "Large deformation and failure analysis of the corrugated flexible composite skin for morphing wing," Engineering Structures, vol. 278, p. 115463, 2023.doi: 10.1016/j.engstruct.2022.115463
[5]           S. Hosseini and G. Rahimi, "Nonlinear bending analysis of hyperelastic plates using FSDT and meshless collocation method based on radial basis function," International Journal of Applied Mechanics, vol. 13, no. 01, p. 2150007, 2021. doi: 10.1142/S1758825121500071
[6]           G. Murray, F. Gandhi, and C. Bakis, "Flexible matrix composite skins for one-dimensional wing morphing," Journal of Intelligent Material Systems and Structures, vol. 21, no. 17, pp. 1771-1781, 2010. doi: 10.1177/1045389X10369719
[7]           M. Amabili, P. Balasubramanian, I. D. Breslavsky, G. Ferrari, R. Garziera, and K. Riabova, "Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate," Journal of sound and vibration, vol. 385, pp. 81-92, 2016. doi: 10.1016/j.jsv.2016.09.015
[8]           B. Xue, A.-M. Zhang, Y.-X. Peng, Q. Zhang, and S. Li, "A meshfree orthotropic laminated shell model for geometrically nonlinear static and dynamic analysis," Computational Mechanics, vol. 73, no. 5, pp. 1033-1051, 2024. doi: 10.1007/s00466-023-02399-4
[9]           I. Dayyani, M. I. Friswell, S. Ziaei-Rad, and E. S. Flores, "Equivalent models of composite corrugated cores with elastomeric coatings for morphing structures," Composite Structures, vol. 104, pp. 281-292, 2015. doi:10.1016/j.compstruct.2013.04.034
[10]        A. Hajarian, O. Zargar, M. Zakerzadeh, S. Baghernejad, and M. Baghani, "Fabrication, characterization, and modeling of a structural flexible skin for applications in morphing wings," Mechanics of Materials, vol. 172, p. 104409, 2022. doi: 10.1016/j.mechmat.2022.104409
 [11]       R. Gupta and D. Harursampath, "Dielectric elastomers: Asymptotically-correct three-dimensional displacement field," International Journal of Engineering Science, vol. 87, pp. 1-12, 2015.doi:  10.1016/j.ijengsci.2014.10.006
[12]        G.-R. Liu and Y.-T. Gu, An introduction to meshfree methods and their programming. Springer Science & Business Media, 2005. doi: 10.1007/1-4020-3468-7_3
[13]        P. Wen and Y. Hon, "Geometrically nonlinear analysis of Reissner-Mindlin plate by meshless computation," Computer Modeling in Engineering and Sciences, vol. 21, no. 3, p. 177, 2007. doi:10.3970/cmes.2007.021.177
[14]        K. Liew, L. Peng, and S. Kitipornchai, "Nonlinear analysis of corrugated plates using a FSDT and a meshfree method," Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 21-24, pp. 2358-2376, 2007. doi:10.1016/j.cma.2006.11.018
[15] S. Xiang, K.-m. Wang, Y.-t. Ai, Y.-d. Sha, and H. Shi, "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories," Composite Structures, vol. 91, no. 1, pp. 31-37, 2009. doi: 10.1016/j.compstruct.2009.04.029
[16]        C. Tiago and P. M. Pimenta, "An EFG method for the nonlinear analysis of plates undergoing arbitrarily large deformations," Engineering analysis with boundary elements, vol. 32, no. 6, pp. 494-511, 2008. doi: 10.1016/j.enganabound.2007.10.014
[17]        J. Zhang, S. Ullah, and Y. Zhong, "New analytical free vibration solutions of orthotropic rectangular thin plates using generalized integral transformation," Journal of Computational and Applied Mathematics, vol. 367, p. 112439, 2020. doi: 10.1016/j.cam.2019.112439
[18] E. Khosrowpour, M. Hematiyan, and M. Hajhashemkhani, "A strong-form meshfree method for stress analysis of hyperelastic materials," Engineering Analysis with Boundary Elements, vol. 109, pp. 32-42, 2019. doi: 10.1016/j.enganabound.2019.09.013
[19]        C. Groth, A. Chiappa, S. Porziani, P. Salvini, and M. E. Biancolini, "An RBF meshless approach to evaluate strain due to large displacements in flexible printed circuit boards," Micromachines, vol. 13, no. 8, p. 1163, 2022. doi: 10.3390/mi13081163
[20]        C. Roque and J. Grasa, "Geometrically nonlinear analysis of laminated composite plates using RBF-PS meshless method," Composite Structures, vol. 267, p. 113830, 2021. doi: 10.1016/j.compstruct.2021.113830
[21] C. Kumar and A. Kumar, "Meshless approach for the bending analysis of elastically supported Sandwich plate under transverse line load," Turkish Online Journal of Qualitative Inquiry, vol. 12, no. 7, 2021.
 [22] E. Barbieri, L. Ventura, D. Grignoli, and E. Bilotti, "A meshless method for the nonlinear von Kármán plate with multiple folds of complex shape: A bridge between cracks and folds," Computational Mechanics, vol. 64, pp. 769-787, 2019. doi: 10.1007/s00466-019-01671-w
[23] M. M. Hussein Al-Tholaia and H. J. Al-Gahtani, "RBF‐Based Meshless Method for Large Deflection of Elastic Thin Rectangular Plates with Boundary Conditions Involving Free Edges," Mathematical Problems in Engineering, vol. 2016, no. 1, p. 6489375, 2016. doi: 10.1155/2016/6489375
[24] L. Peng, Z. Huang, D. Wei, and X. He, "Static and dynamic analysis of the composite laminated stiffened plates via the MLS meshless method," Engineering Analysis with Boundary Elements, vol. 151, pp. 309-327, 2023. doi: 10.1016/j.enganabound.2023.03.008
[25]        K. S. Shah, A. M. Gadade, and S. M. Sansgiri, "Implementation of point interpolation meshless method for failure analysis of laminated composite beams," Mechanics of Advanced Materials and Structures, vol. 29, no. 25, pp. 3997-4007, 2022. doi: 10.1080/15376494.2021.1916137
[26]        C. Kumar, R. Kumar, H. K. Sharma, and S. Khare, "Simulation and Modelling for Bending Analysis of Elastically Supported Laminated Plates Under Concentrated Load: A Meshless Approach," International Journal of Steel Structures, vol. 23, no. 4, pp. 1091-1104, 2023. doi: 10.1007/s13296-023-00752-0
[27]        M. M. H. Al-Tholaia and H. J. Al-Gahtani, "RBF-based meshless method for large deflection of elastic thin plates on nonlinear foundations," Engineering Analysis with Boundary Elements, vol. 51, pp. 146-155, 2015. doi: 10.1016/j.enganabound.2014.10.011
[28]        B. Selim and Z. Liu, "Impact analysis of functionally-graded graphene nanoplatelets-reinforced composite plates laying on Winkler-Pasternak elastic foundations applying a meshless approach," Engineering Structures, vol. 241, p. 112453, 2021. doi: 10.1016/j.engstruct.2021.112453
[29] Naderi R., Khademalrasoul A. Fully Automatic Crack Propagation Modeling in the Interaction with Void and Inclusion without Remeshing. Modares Mechanical Engineering, 2015; 15(7): 261-273.
[30] faraji S., Afshar M. Node enrichment-moving error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method for solution of elasticity problems. Modares Mechanical Engineering, 2014; 14(3): 194-202