مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

تحلیل تجربی و عددی اثر سرما بر روی انتقال صوت از یک پوسته استوانه‌ای فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان
1 گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران
2 گروه مهندسی مکانیک، دانشگاه پیام نور، تهران، ایران
10.48311/mme.2025.96877.0
چکیده
در این پژوهش، به بررسی تأثیر سرما بر میزان انتقال صوت در یک پوسته استوانه‌ای فولادی به دو روش تجربی و حل عددی پرداخته شده است. با کاهش دما، خواص مکانیکی پوسته از جمله مدول الاستیسیته تغییر می‌یابد که این امر بر رفتار ارتعاشی و در نتیجه میزان انتقال صوت از طریق پوسته تأثیر می‌گذارد. برای بررسی تجربی این مسأله، با استفاده از اتاق تست آکوستیک و با ارسال امواج آکوستیکی، سازه مذکور تحریک‌شده و میزان فشار صوت عبوری از این پوسته در دو دمای متفاوت 25 و 70- درجه سانتی­گراد اندازه گیری شده است. در بخش تحلیل عددی نیز، مدل‌سازی المان محدود پوسته استوانه‌ای در نرم‌افزار کامسول انجام شده و تحلیل ارتعاشی آکوستیکی بصورت عددی بر روی مدل در دو دمای مذکور صورت گرفته است. نتایج شبیه‌سازی عددی با نتایج آزمایشگاهی تطابق بسیار خوبی داشته و نشان داد که مدل عددی قادر به پیش‌بینی مناسب رفتار ارتعاشی صوتی پوسته در دماهای مختلف است. همچنین نتایج این پژوهش نشان دادند که دما به عنوان یک پارامتر مهم بر مکانیزم انتقال صوت در سازه‌های پوسته‌ استوانه ­ای تأثیرگذار بوده و با کاهش دما، سطح فشار صوت عبوری از پوسته کاهش می‌یابد.، لذا با درک دقیق این موضوع، می‌توان طراحی‌های بهینه‌تری برای کاهش صوت و ارتعاش چنین سازه­ هایی تحت اثر گرادیان دما در محیط ­های حرارتی انجام داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental and Numerical Analysis of the Effect of Cold on Sound Transmission from a Steel Cylindrical Shell

نویسندگان English

maisam parhikhteh 1
Omid Mohammadpour 2
Reza Ahmadi 2
Mahdi Karimi 1
1 Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Mechanical Engineering Department, Payame Noor University ،Tehran, Iran
چکیده English

In this research, the effect of cold on the sound transmission rate in a steel cylindrical shell is examined through both experimental and numerical methods. As the temperature decreases, the mechanical properties of the shell, including the elastic modulus, change, which impacts the vibrational behavior and consequently the sound transmission through the shell. To investigate this issue experimentally, the structure was excited using an acoustic testing chamber where acoustic waves were sent, and the sound pressure level passing through the shell was measured at two different temperatures: 25°C and -70°C. In the numerical analysis section, finite element modeling of the cylindrical shell was conducted using COMSOL software, and the acoustic vibrational analysis was performed numerically on the model at the two specified temperatures. The results of the numerical simulation matched very well with the experimental results, indicating that the numerical model is capable of adequately predicting the acoustic vibrational behavior of the shell at different temperatures. Furthermore, the findings of this research demonstrated that temperature significantly influences the sound transmission mechanism in cylindrical shell structures, and as the temperature decreases, the sound pressure level passing through the shell decreases. Therefore, with a thorough understanding of this matter, it is possible to design more optimized solutions for reducing noise and vibrations in such structures under the effects of temperature gradients in thermal environments

کلیدواژه‌ها English

Sound Transmission, Cylindrical Shell, Temperature Variations, COMSOL, Acoustic Chamber
[1] M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, "Acoustic Insulation Characteristics of Shell Structures: A Review," Arch. Comput. Methods Eng., vol. 28, pp. 505–523, 2021. doi:10.1007/s11831-020-09569-2.
[2] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, "Thermal effects on the sound transmission through aerospace composite structures," Aerospace Sci. Technol., vol. 30, no. 1, pp. 192-199, 2013. doi:10.1016/j.aerosci.2013.02.007.
[3] K. Rahmatnezhad, M. R. Zarastvand, and R. Talebitooti, "Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature," Composite Structures, vol. 276, 114557, 2021. doi:10.1016/j.compstruct.2021.114557.
[4] P. W. Smith, "Sound transmission through thin cylindrical shells," J. Acoust. Soc. Am., vol. 29, pp. 712-729, 1955. doi:10.1121/1.1908165.
[5] M. C. Junger and P. W. Smith, "The Transmission of Sound by Spherical Shells," J. Acustica, vol. 5, pp. 47-48, 1955. doi:10.1016/S0003-682X(55)80007.
[6] P. Jeyaraj, C. Padmanabhan, and N. Ganesan, "Vibration and acoustic response of an isotropic plate in a thermal environment," J. Vib. Acoust., vol. 130, no. 5, 2008. doi:10.1115/1.2907632.
[7] P. Jeyaraj, N. Ganesan, and C. Padmanabhan, "Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment," J. Sound Vib., vol. 320, no. 1-2, pp. 322-343, 2009. doi:10.1016/j.jsv.2008.07.040.
[8] P. Jeyaraj, C. Padmanabhan, and N. Ganesan, "Vibro-acoustic behavior of a multilayered viscoelastic sandwich plate under a thermal environment," J. Sandwich Struct. Mater., vol. 13, no. 5, pp. 509-537, 2011. doi:10.1177/1099636211409491.
[9] P. Ponnusamy and R. Selvamani, "Wave propagation in a transversely isotropic magneto thermo elastic cylindrical panel," Eur. J. Mech. A/Solids, vol. 39, pp. 76-85, 2013. doi:10.1016/j.euromechsol.2012.06.009.
[10] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, "Computing the broadband vibroacoustic response of arbitrarily thick layered panels by a wave finite element approach," Appl. Acoust., vol. 77, pp. 89-98, 2014. doi:10.1016/j.apacoust.2013.10.010.
[11] X. Li and K. Yu, "Vibration and acoustic responses of composite and sandwich panels under thermal environment," Composite Structures, vol. 131, pp. 104-1049, 2015. doi:10.1016/j.compstruct.2015.06.037.
[12] W. Li and Y. Li, "Vibration and sound radiation of an asymmetric laminated plate in thermal environments," Acta Mechanica Solida Sinica, vol. 28, no. 1, pp. 11-22, 2015.
[13] T. Yang, W. Zheng, Q. Huang, and S. Li, "Sound radiation of functionally graded materials plates in thermal environment," Compos. Struct., vol. 144, pp. 165-176, 2016. doi:10.1016/j.compstruct.2016.02.061.
[14] F. X. Xin, J. Q. Gong, S. W. Ren, L. X. Huang, and T. J. Lu, "Thermoacoustic response of a simply supported isotropic rectangular plate in graded thermal environments," Appl. Math. Model., vol. 44, pp. 456-469, 2017. doi:10.1016/j.apm.2017.02.003.
[15] X. Li, K. Yu, and R. Zhao, "Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment," Appl. Acoust., vol. 132, pp. 82-96, 2018. doi:10.1016/j.apacoust.2017.12.030.
[16] X. Li, K. Yu, R. Zhao, J. Han, and H. Song, "Sound transmission loss of composite and sandwich panels in thermal environment," Composites Part B: Engineering, vol. 133, pp. 1-14, 2018. doi:10.1016/j.compositesb.2017.10.028
[17] N. Sharma, T. R. Mahapatra, and S. K. Panda, "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: a higher-order finite boundary element approach," Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., vol. 232, no. 18, pp. 3235-3249, 2018. doi:10.1177/0954406218766666.
[18] N. Sharma, T. R. Mahapatra, and S. K. Panda, "Thermoacoustic Behavior of Laminated Composite Curved Panels Using Higher-Order Finite-Boundary Element Model," Int. J. Appl. Mechanics, vol. 10, no. 1, 2018. doi:10.1142/S1758825118500175.
[19] N. Sharma, T. R. Mahapatra, S. K. Panda, and P. Katariya, "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel," J. Sandwich Struct. Mater., vol. 22, no. 5, pp. 1357-1385, 202. doi:10.1177/1099636218784846.
[20] N. Sharma, T. R. Mahapatra, and S. K. Panda, "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment," J. Sound Vib., vol. 431, pp. 346-366, 2018. doi:10.1016/j.jsv.2018.05.051.
[21] N. Sharma, T. R. Mahapatra, and S. K. Panda, "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets," Engineering Structures, vol. 197, 109355, 2019. doi:10.1016/j.engstruct.2019.109355.
[22] K. Zhou, Z. Lin, X. Huang, and H. Hua, "Vibration and sound radiation analysis of temperature dependent porous functionally graded material plates with general boundary conditions," Appl. Acoust., vol. 154, pp. 236-250, 2019. doi:10.1016/j.apacoust.2019.05.020.
[23] K. Rahmatnezhad, M. R. Zarastvand, and R. Talebitooti, "Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature," Composite Structures, vol. 276, 114557, 2021. doi:10.1016/j.compstruct.2021.114557.
[24] W. Yuan, H. Liao, R. Gao et al., "Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment," Appl. Math. Mech.-Engl. Ed., vol. 44, pp. 897–916, 2023. doi:10.1007/s10483-023-3004-7.
[25] B. Meesala, P. Chaupal, and P. Rajendran, "Vibro-acoustic Behavior of GFRP Curved Panel Under Non-uniform Thermal Environment," in Proceedings of the International Symposium on Lightweight and Sustainable Polymeric Materials (LSPM23), S. Mavinkere Rangappa and S. Synching, Eds. Singapore: Springer, 2023, vol. 32. doi:10.1007/978-981-99-5567-1_5.
[26] Z. Wang, T. Fu, and J. Li, "Sound transmission loss behavior of honeycomb sandwich plate structure under thermal loading," Mechanics of Advanced Materials and Structures, vol. 1-11, 2023. doi:10.108/15376494.2023.2262106.
[27] P. Roodgar Saffari, S. Sirimontree, C. Thongchom, T. Jearsiripongkul, P. Saffari, and S. Keawsawasvong, "Effect of uniform and nonuniform temperature distributions on sound transmission loss of double-walled porous functionally graded magneto-electro-elastic sandwich plates with subsonic external flow," Int. J. Thermofluids, vol. 17, 100311, 2023. doi:10.1016/j.ijft.2023.100311.
[28] D. Wu, Y. Wang, Y. Pu, L. Shang, and Z. Gao, "Experimental investigation of high temperature thermal-vibration characteristics for composite wing structure of hypersonic flight vehicles," J. Vibroengineering, vol. 17, no. 2, pp. 917–927, Mar. 2015. doi:10.21595/jve.2015.16367.
[29] V. N. Koukounian and C. K. Mechefske, "Computational Modelling and Experimental Verification of the Vibroacoustic Behavior of Aircraft Fuselage Sections," Appl. Acoust., vol. 132, pp. 8-18, 2018. doi:10.1016/j.apacoust.2017.09.013.
[30] P. Oliazadeh, A. Farshidianfar, and M. J. Crocker, "Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing material," J. Sound Vibration, vol. 434, pp. 28–43, 2018. doi:10.1016/j.jsv.2018.07.024
[31] P. Oliazadeh, A. Farshidianfar, and M. J. Crocker, "Study of sound transmission through single- and double-walled plates with absorbing material: Experimental and analytical investigation," Appl. Acoust., vol. 145, pp. 7-24, 2019. doi:10.1016/j.apacoust.2018.10.027.
[32] T. Yang, Z. Zhao, Y. Qin, F. Pang, Y. Du, C. Gao, and H. Li, "Experimental and numerical investigation on vibro-acoustic performance of a submerged stiffened cylindrical shell under multiple excitations," Thin-Walled Struct., vol. 197, 111569, 2024. doi:10.1016/j.tws.2024.111569.
[33] K. Erukala, A. K. Meher, V. Kumar, N. Sharma, H. C. Dewangan, P. Kataria, and S. K. Panda, "Numerical prediction of thermoacoustic responses of CNT reinforced natural (luffa) fibre/epoxy hybrid composite and experimental verification," Appl. Acoust., vol. 211, 109580, 2023. doi:10.1016/j.apacoust.2022.109580.
[34] J. Lee, D. Cho, K. Kim, and S. Park, "Experimental validation on structure-borne underwater radiated noise transfer function analysis for marine structure," Int. J. Naval Architect. Ocean Eng., vol. 16, 100585, 2024. doi:10.1016/j.ijnaoe.2023.100585.
[35] A. Mohammadi and B. Gholizadeh, "Analysis of Temperature Effect on Acoustic Behavior of Composite Structures Under Thermal Loading," Journal of Mechanical Engineering, vol. 20, no. 2, pp. 123-134, 2021. doi:10.22060/mej.2021.19434.103.
[36] M. Rezaei and J. H. Faraji, "Modeling Vibration and Sound Transmission in Composite Panels Under Thermal Effects," Journal of Mechanical Engineering, vol. 20, no. 3, pp. 145-159, 2021. doi:10.22060/mej.2021.19435.1031.
[37] Everitt, B.S. ,"The Cambridge Dictionary of Statistics", 2003.
[38] Power Piping, ASME code for pressure piping, B31 ASME B31.1, Table C-1, 2024.
[39] https://www.engineeringtoolbox.com/young-modulus-d_773.html
[40] Fukuhara, M. & Sanpei, A. "Internal friction and elastic modulus of carbon steels". ISIJ International, Vol. 33, no 4, pp. 374381, 1993.
[41] Hoyos, J. J. et al. "Effects of tempering on internal friction of carbon steels". Materials Science & Engineering A, vol. 528, no. 28, pp. 86898696, 2011