[
1] I. J. Goodfellow, et al., "Generative adversarial nets," Advances in Neural Information Processing Systems, vol. 27, 2014.
doi:10.48550/arXiv.1406.2646
[
2] A. Aggarwal, M. Mittal, and G. Battineni, "Generative adversarial network: An overview of theory and applications," International Journal of Information Management Data Insights, vol. 1, no. 1, p. 100004, 2021.
doi :10.1016/j.jjimei.2020.100004
[3] P. Isola, et al., "Image-to-image translation with conditional adversarial networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. doi:10.1109/CVPR.2017.632
[4] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015. Springer.
doi:10.1007/978-3-319-24574-4_28
[5] Z. Yang, C. H. Yu, and M. J. Buehler, "Deep learning model to predict complex stress and strain fields in hierarchical composites," Science Advances, vol. 7, no. 15, 2021.doi:10.1126/sciadv.abd7416
[6] C. Xu, et al., "Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites," Computer Modeling in Engineering & Sciences (CMES), vol. 140, no. 1, 2024.doi:10.32604/cmes.2024.047327
[
7] V. L. T. De Souza, et al., "A review on generative adversarial networks for image generation," Computers & Graphics, vol. 114, pp. 13–25, 2023.
doi:10.1016/j.cag.2023.05.010
[
8] Tensorflow, "Pix2Pix tutorial." Available: https://www.tensorflow.org/tutorials/generative/pix2pix.
doi:10.5281/zenodo.4724125
[
9] P. Ulmas and I. Liiv, "Segmentation of satellite imagery using U-net models for land cover classification," arXiv preprint arXiv:2003.02899, 2020.
doi: 10.48550/arXiv.2003.02899
[
10] J. Zhao, et al., "Firefighting Robot Extinguishment Decision‐Making Based on Visual Guidance: A Novel Attention and Scale U‐Net Model and Genetic Algorithm," Journal of Field Robotics, vol. 42, no. 4, pp. 1103–1124, 2025.
doi: 10.1002/rob.22438
[
11] G. Du, et al., "Medical image segmentation based on U-net: A review," Journal of Imaging Science & Technology, vol. 64, no. 2, 2020.
doi:10.2352/J.ImagingSci.Technol.2020.64.2.020508
[
12] Y. Gündüç, "Vit-gan: Image-to-image translation with vision transformers and conditional gans," arXiv preprint arXiv:2110.09305, 2021.
doi: 10.48550/arXiv.2110.09305
[13] Nie, Z., Jiang, H. and Kara, L.B., 2018. Deep learning for stress field prediction using convolutional neural networks. arXiv preprint arXiv:1808.08914.
[
14] Zhao, Q., Sun, B., Zhao, W., Watanabe, T., Usui, T. and Takeda, H., 2024. Improved GAN-based deep learning approach for strain field prediction and failure analysis of precast bridge slab joints. Engineering Structures, 321, p.119023.
doi:10.1016/j.engstruct.2024.119023
[
15] Xiang, Y., Hou, J., Chen, X., Pidaparti, R., Song, K., Tang, K. and Wang, X., 2024. A GAN-based stepwise full-field mechanical prediction model for architected metamaterials. International Journal of Mechanical Sciences, 284, p.109771.
doi:10.1016/j.ijmecsci.2024.109771
[
16] Sahu, R., Gupta, A., Mittal, D., Chatterjee, P. and Jha, S.K., 2025. Unsupervised Graph-GAN model for stress–strain field prediction in a composite. Journal of Materials Science, pp.1-20.
doi:10.1007/s10853-025-10772-2
[
17] Liu, Y., Lin, Q., Pan, W., Yu, W., Ren, Y. and Zhao, Y., 2024. SR-M− GAN: A generative model for high-fidelity stress fields prediction of the composite bolted joints. Advanced Engineering Informatics, 61, p.102537.
doi:10.1016/j.aei.2024.102537
[18]
Hui, X., Xu, Y., Niu, J. and Zhang, W., 2024. Rapid evaluation and prediction of cure-induced residual stress of composites based on cGAN deep learning model. Composite Structures, 330, p.117827.
[19] Amieghemen, G.E., Ramezani, M. and Sherif, M.M., 2025. Residual Pyramidal GAN (RP-GAN) for crack detection and prediction of crack growth in engineered cementitious composites. Measurement, 242, p.115769.
doi:10.1016/j.measurement.2024.115769
[
20] Jiang, L., Hu, Y., Li, H., Shao, X., Zhang, X., Kan, Q. and Kang, G., 2025. A cGAN-based fatigue life prediction of 316 austenitic stainless steel in high-temperature and high-pressure water environments. International Journal of Fatigue, 190, p.108633.
doi:10.1016/j.ijfatigue.2024.108633