مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی عددی تراوایی در ایمپلنت‌های متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان
دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران
10.48311/mme.2025.96817.0
چکیده
هدف این پژوهش، بررسی عددی تراوایی ایمپلنت‌های متخلخل با سلول واحدهای مکعبی برش‌خورده، الماسی، مکعبی مرکز پر و تسراکت بوده است. در ابتدا، داربست‌های متخلخل با استفاده از نرم‌افزار سالیدورکز طراحی و سپس با بهره‌گیری از نرم‌افزار انسیس فلوئنت شبیه‌سازی عددی انجام شده و نتایج استخراج گردید. خروجی‌های شبیه‌سازی شامل کانتورهای فشار، سرعت و خطوط جریان بودند. با استفاده از مقادیر افت فشار، مشخصه‌های سیال و پارامترهای ساختاری داربست، تراوایی داربست‌ها در سه حالت مختلف شامل تغییر سرعت ورودی، تفاوت در سلول‌ واحد‌های داربست، و مقایسه مدل‌های جریان نیوتنی و غیرنیوتنی محاسبه شد. برای مدل‌‌سازی جریان غیرنیوتنی، از مدل‌های جریان کراس (Cross) و کرئو (Carreau) استفاده شد. مزیت اصلی این مدل‌ها توانایی در پیش‌بینی دقیق رفتار ویسکوزیته در محدوده وسیعی از نرخ‌های برش، از جمله نواحی با ویسکوزیته ثابت در برش‌های بسیار پایین و بسیار بالا است. نتایج به‌دست‌آمده نشان داد در حالت ویسکوزیته ثابت، داربست‌ها با سلول واحد مکعبی برش‌خورده و تسراکت به‌ترتیب با مقادیر تراوایی 11×10^(-٨)/1 متر مربع و ×10^(-٨) 18/0 متر مربع، بیشترین و کمترین مقادیر تراوایی را دارا هستند و بنابراین سلول مکعبی برش‌خورده نسبت به سایر سلول‌های واحد، برای طراحی و ساخت ایمپلنت‌های استخوانی هندسه مناسب‌تری است. همچنین مشخص شد که سرعت ورودی سیال تأثیر قابل‌توجهی بر تراوایی داربست‌ها ندارد. بر اساس نتایج به‌دست آمده، در تمامی سلول‌های واحد، سیال با مدل جریانی کراس افت فشار بیشتری نسبت به مدل کرئو و ویسکوزیته ثابت تجربه کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Study of Permeability in Porous Implants

نویسندگان English

Faezeh Shirin
Reza Hedayati
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده English

This study presents a numerical investigation of the permeability of porous implants with unit cells in the form of truncated cube, diamond, body-centered cubic (BCC), and tesseract geometries. Initially, the porous scaffolds were designed using SolidWorks software, and then numerical simulations were performed using ANSYS Fluent. The simulation outputs included pressure contours, velocity contours, and streamlines. The permeability of the scaffolds was calculated based on the pressure drop values, fluid properties, and structural parameters of the scaffolds under three different conditions: variations in inlet velocity, differences in unit cell geometry, and a comparison between Newtonian and non-Newtonian flow models. For modeling non-Newtonian flow, the Cross and Carreau flow models were used. The primary advantage of these models is their ability to accurately predict viscosity behavior across a wide range of shear rates, including regions of constant viscosity at very low and very high shear rates. The obtained results showed that, in the constant viscosity regime, the scaffolds with the Split-P and Gyroid unit cells exhibited the highest and lowest permeability values of  m² and  m², respectively. Therefore, the Split-P unit cell is more suitable than the other unit cells for the design and fabrication of bone implant geometries. It was also observed that the inlet velocity had no significant effect on scaffold permeability. According to the results, in all types of unit cells, the fluid modeled using the Cross model experienced a higher pressure drop compared to the Carreau model and the constant-viscosity (Newtonian) model. These findings contribute to the enhancement of porous implant design and the optimization of their performance in biomedical applications.

کلیدواژه‌ها English

Porous implants
Permeability
Truncated cube
Tesseract
Body-centered cubic
 
 [1]   R. Hedayati and S. M. F. A. Zare, “Effect of window geometry on strength of shaft part of femur bone,” Periodica Polytechnica Mechanical Engineering, vol. 59, no. 2, pp. 81–87, 2015, doi: 10.3311/PPme.7861.
 [2]   E. E. Bird, T. L. Kivell, and M. M. Skinner, “Cortical and trabecular bone structure of the hominoid capitate,” Journal of Anatomy, vol. 239, no. 2, pp. 351–373, 2021, doi: 10.1111/joa.13437.
 [3]   E. C. Herbst, A. A. Felder, L. A. E. Evans, S. Ajami, B. Javaheri, and A. A. Pitsillides, “A new straightforward method for semi-automated segmentation of trabecular bone from cortical bone in diverse and challenging morphologies,” Royal Society Open Science, vol. 8, no. 8, p. 210408, 2021, doi: 10.1098/rsos.210408.
 [4]   R. Hedayati and M. Sadighi, “A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads,” Journal of Theoretical and Applied Mechanics, vol. 54, no. 3, pp. 769–781, 2016, doi: 10.15632/jtam-pl.54.3.769.
 [5]   H. Mehboob, A. Ouldyerou, M. F. Ijaz, M. A. Mehboob, F. Abbassi, F. Ahmad, A. S. Khan, and S. Miran, “Bioinspired porous dental implants using the concept of 3D printing to investigate the effect of implant type and porosity on patient’s bone condition,” Mechanics of Advanced Materials and Structures, vol. 29, no. 27, pp. 6011–6025, 2022, doi: 10.1080/15376494.2021.1971347.
 [6]   B. Peng, H. Xu, F. Song, P. Wen, Y. Tian, Y. F. Zheng and co-authors, “Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification,” Journal of Materials Science & Technology, vol. 182, pp. 79–110, 2024, doi: 10.1016/j.jmst.2023.08.072.
 [7]   R. Alkentar, N. Kladovasilakis, D. Tzetzis, and T. Mankovits, “Effects of pore size parameters of titanium additively manufactured lattice structures on the osseointegration process in orthopedic applications: a comprehensive review,” Crystals, vol. 13, no. 1, p. 113, 2023, doi: 10.3390/cryst13010113.
 [8]   A. Parisien, M. S. ElSayed, and H. Frei, “Mature bone mechanoregulation modelling for the characterization of the osseointegration performance of periodic cellular solids,” Materialia, vol. 25, p. 101552, 2022, doi: 10.1016/j.mtla.2022.101552.
 [9]   S. Kligman, Z. Ren, C.-H. Chung, M. A. Perillo, Y.-C. Chang, H. Koo, Z. Zheng, and C. Li, “The impact of dental implant surface modifications on osseointegration and biofilm formation,” Journal of Clinical Medicine, vol. 10, no. 8, p. 1641, 2021, doi: 10.3390/jcm10081641.
 [10]            R. Hedayati, A. Zadpoor, G. Pouran, Y. Li, H. Weinans, et al., “Analytical relationships for 2D Re-entrant auxetic metamaterials: An application to 3D printing flexible implants,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 143, p. 105938, 2023, doi: 10.1016/j.jmbbm.2023.105938.
 [11]            U. A. Dar, H. H. Mian, M. Abid, A. Topa, M. Z. Sheikh, and M. Bilal, “Experimental and numerical investigation of compressive behavior of lattice structures manufactured through projection micro stereolithography,” Materials Today Communications, vol. 25, p. 101563, 2020, doi: 10.1016/j.mtcomm.2020.101563.
 [12]            N. Novak, O. Al-Ketan, L. Krstulović-Opara, R. Rowshan, R. K. Abu Al-Rub, and M. Vesenjak, “Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures,” Composite Structures, vol. 266, p. 113801, 2021, doi: 10.1016/j.compstruct.2021.113801.
 [13]            D. A. Deporter, P. A. Watson, R. M. Pilliar, M. L. Chipman, and N. Valiquette, “A histological comparison in the dog of porous-coated vs. threaded dental implants,” J. Dent. Res., vol. 69, no. 5, pp. 1138–1145, 1990.
 [14]            R. Hedayati, A. Yousefi, and M. Bodaghi, “Sandwich structures with repairable cores based on truncated cube cells,” Compos. Part B Eng., vol. 243, p. 110124,2022,doi:10.1016/j.compositesb.2022.110124.
 [15]            Z. Xiao, Y. Yang, R. Xiao, Y. Bai, C. Song, and D. Wang, “Evaluation of topology-optimized lattice structures manufactured via selective laser melting,” Materials & Design, vol. 143, pp. 27–37, 2018.
 [16]            N. Ghavidelnia, R. Hedayati, M. Sadighi, and M. Mohammadi-Aghdam, “Development of porous implants with non-uniform mechanical properties distribution based on CT images,” Appl. Math. Modell., vol. 83, pp. 801–823, 2020, doi: 10.1016/j.apm.2020.03.002.
 [17]            N. Ghavidelnia, S. Jedari Salami, and R. Hedayati, “Analytical relationships for yield stress of five mechanical meta-biomaterials,” Mech. Based Des. Struct. Mach., vol. 48, no. 4, pp. 1–23, 2020, doi: 10.1080/15397734.2020.1807363.
 [18]            D. Ali, A. Ali, A. Khan, and R. K. Abu Al-Rub, “Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis,” European Journal of Mechanics – B/Fluids, vol. 79, pp. 376–385, 2020, doi: 10.1016/j.euromechflu.2019.09.015.
 [19]            A. Timercan, V. Sheremetyev, and V. Brailovski, “Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: Functional requirements and comparative analysis,” Science and Technology of Advanced Materials, vol. 22, no. 1, pp. 285–300, 2021, doi: 10.1080/14686996.2021.1907222.
 [20]            Y. Zhang et al., “Impacts of permeability and effective diffusivity of porous scaffolds on bone ingrowth: In silico and in vivo analyses,” Biomater. Adv., vol. 164, p. 213968, Nov. 2024.
 [21]            C. M. Suryawanshi et al., “Effective design and mechanical response of Gyroid lattice scaffold for orthopedic implants,” Manuf. Lett., vol. 35, pp. 493–501, Aug. 2023, doi: 10.1016/j.mfglet.2023.07.015.
 [22]            B. Zeinali, H. Soleimani Jafarabadi, and M. Bazargan, “Novel equations for permeability and elastic modulus of triply periodic minimal surface scaffolds via experimental and numerical analysis,” Adv. Eng. Mater., vol. 27, no. 18, p. 2500414, 2025, doi: 10.1002/adem.202500414.
 [23]            Q. Zhang et al., “Parametric design, mechanical properties and permeability of biomedical porous scaffolds based on typical structure units,” J. Mech. Med. Biol., vol. 22, no. 9, p. 2240063, Nov. 2022.
 [24]            S. Truscello et al., “Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study,” Acta Biomater., vol. 8, no. 4, pp. 1648–1658, Apr. 2012, doi: 10.1016/j.actbio.2011.12.021.
 [25]            A. D’Orazio, A. Karimipour, and R. Ranjbarzadeh, “Lattice Boltzmann modelling of fluid flow through porous media: A comparison between pore-structure and representative elementary volume methods,” Energies, vol. 16, no. 14, p. 5354, Jul. 2023, doi: 10.3390/en16145354.
 [26]            A. Sequeira and J. Janela, “An overview of some mathematical models of blood rheology,” in A Portrait of State-of-the-Art Research at the Technical University of Lisbon, M. S. Pereira, Ed., Dordrecht: Springer, 2007, pp. 433–455, doi: 10.1007/978-1-4020-5690-1_22.
 [27]            Y. Du et al., “Finite element analysis of mechanical behavior, permeability of irregular porous scaffolds and lattice-based porous scaffolds,” Mater. Res. Express, vol. 6, no. 10, p. 105407, Sep. 2019.