مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

آنالیز چندمعیاره و بهینه‌سازی سیستم ترکیبی پیل سوختی اکسید جامد–سیکل برایتون فوق‌بحرانی CO₂ و رانکین آلی بر پایه تحلیل انرژی، اگزرژی، اقتصادی، زیست‌محیطی، الگوریتم گرگ خاکستری وSWOT: مطالعه پارامتریک

نوع مقاله : مقاله پژوهشی

نویسنده
دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
10.48311/mme.2025.117243.82874
چکیده
در این پژوهش، عملکرد انرژی، اگزرژی، اقتصادی و زیست محیطی یک پیل سوختی اکسید جامد (SOFC) متصل به دو سیکل پیشنهادی بازیابی حرارت شامل سیکل برایتون فوق‌بحرانی دی‌اکسیدکربن (sCO₂) و سیکل ارگانیک رانکین (ORC) بررسی شد. مدل جامع پیل سوختی شامل معادلات الکتروشیمیایی، افت‌های فعال، اهمی و غلظتی توسعه‌یافته و با داده‌های تجربی مرجع اعتبارسنجی گردید. سپس تحلیل انرژی و اگزرژی کل سیستم انجام گردید تا سیکل بهتر با در نظر گرفتن عملکرد و تحلیل SWOT انتخاب گردد. سپس سیکل برایتون فوق‌بحرانی دی‌اکسیدکربن مورد بهینه‌سازی چندهدفه با الگوریتم گرگ خاکستری (GWO) برای بیشینه‌سازی توان و کمینه‌سازی تلفات اگزرژی صورت گرفت. نتایج نشان داد با افزایش چگالی جریان از 0.4 تا 1 آمپر بر سانتی‌متر مربع، ولتاژ سلول از 0.88 به 0.63 ولت کاهش و گرمای بازیافتی از 12 به 25 کیلووات افزایش می‌یابد. در نقطه بهینه به‌دست‌آمده از GWO، چگالی جریان 0.875 آمپر برسانتی‌متر مربع، توان خالص سیستم 501 کیلووات، بازده انرژی 74/53٪ و نرخ تخریب اگزرژی کل حدود 23/377 کیلووات محاسبه شد. مقایسه دو ترکیب نشان داد که سیستم SOFC–sCO₂ حدود 24٪ بازده انرژی بالاتری نسبت به پیل سوختی اکسید جامد دارد. همچنین، ترکیب‌ بازیاب حرارت با سیستم SOFC–sCO₂ موجب کاهش 21/39٪ در انتشار CO₂ معادل نسبت به SOFC مستقل شدند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Multi-Criteria Analysis and Optimization of a Combined Solid Oxide Fuel Cell–Supercritical CO₂ Brayton and Organic Rankine Cycle System Based on Energy, Exergy, Economic, and Environmental Assessments, Grey Wolf Optimizer Algorithm, and SWOT: A Parametric Study

نویسنده English

Behrad Alizadeh Kharkeshi
Mechanical Engineering Faculty,Babol Noshirvani University of Technology, Babol, Iran
چکیده English

In this current study, the energy, exergy, economic, and environmental efficiency of an integrated solid oxide fuel cell (SOFC) with two proposed waste heat recovery cycles - an organic Rankine cycle (ORC) and a supercritical carbon dioxide Brayton cycle (sCO₂) was investigated. The SOFC model used in the analysis was detailed and included electrochemical equations along with expressions for activation, ohmic, and concentration losses derived from it and was validated against reference experimental data. Then a systematic energy and exergy analysis of the complete system was performed to identify the optimum cycle in terms of efficiency and SWOT evaluation. The supercritical carbon dioxide Brayton cycle was then optimized multi-objectively with the Grey Wolf Optimizer (GWO) algorithm for maximum power and minimum destruction of exergy. The results indicated that an increase in the current density from 0.4 to 1 A/cm² reduced the cell voltage from 0.88 to 0.63 V, while the recovered heat increased from 12 to 25 kW. At the optimal position from the GWO, the energy efficiency, net system power, current density, and total rate of exergy destruction were 0.875 A/cm², 501 kW, 53.74%, and approximately 377.23 kW, respectively. The comparison between the two configurations showed that the energy efficiency of the SOFC–sCO₂ system was greater than that of the stand-alone SOFC by more than 24%. In addition, incorporation of the waste heat recovery system into the SOFC–sCO₂ system reduced the same CO₂ emissions by 39.21% relative to the independent SOFC system

کلیدواژه‌ها English

Solid Oxide Fuel Cell
Supercritical Carbon Dioxide Brayton Cycle
Organic Rankine Cycle
Energy and Exergy Analysis
Multi-Objective Optimization
[1] T. Conboy, S. Wright, J. Pasch, D. Fleming, G. Rochau, and R. Fuller, "Performance characteristics of an operating supercritical CO2 Brayton cycle," 2012.
[2] B. D. Iverson, T. M. Conboy, J. J. Pasch, and A. M. Kruizenga, "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, vol. 111, pp. 957-970, 2013/11/01/ 2013. doi:10.1016/j.apenergy.2013.06.020
[3] P. Garg, P. Kumar, and K. Srinivasan, "Supercritical carbon dioxide Brayton cycle for concentrated solar power," The Journal of Supercritical Fluids, vol. 76, pp. 54-60, 2013/04/01/ 2013. doi:10.1016/j.supflu.2013.01.010
[4] K. Wang, Y.-L. He, and H.-H. Zhu, "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, vol. 195, pp. 819-836, 2017/06/01/ 2017. doi:10.1016/j.apenergy.2017.03.099
[5] Y. Zhang et al., "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, vol. 155, pp. 1-14, 2018/07/15/ 2018. doi:10.1016/j.energy.2018.05.003
[6] J. Yang, Z. Yang, and Y. Duan, "Part-load performance analysis and comparison of supercritical CO2 Brayton cycles," Energy Conversion and Management, vol. 214, p. 112832, 2020/06/15/ 2020. doi:10.1016/j.enconman.2020.112832
[7] J. Y. Heo, M. S. Kim, S. Baik, S. J. Bae, and J. I. Lee, "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, vol. 206, pp. 1118-1130, 2017/11/15/ 2017. doi:10.1016/j.apenergy.2017.08.081
[8] B. Xingyan, X. Wang, R. Wang, J. Cai, H. Tian, and G. Shu, "Optimal selection of supercritical CO2 Brayton cycle layouts based on part-load performance," Energy, vol. 256, p. 124691, 2022/10/01/ 2022. doi:10.1016/j.energy.2022.124691
[9] E. Sun, G. Zhu, L. Chen, B. Li, Z. Leng, and J. Xu, "Construction of a supercritical CO2 Brayton cycle waste heat utilization system using the dichotomy," Energy, vol. 338, p. 138873, 2025/11/30/ 2025. doi:10.1016/j.energy.2025.138873
[10] F. A. Al-Sulaiman, I. Dincer, and F. Hamdullahpur, "Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production," Journal of Power Sources, vol. 195, no. 8, pp. 2346-2354, 2010/04/15/ 2010. doi:10.1016/j.jpowsour.2009.10.075
[11] H. Ozcan and I. Dincer, "Thermodynamic analysis of an integrated sofc, solar orc and absorption chiller for tri‐generation applications," Fuel Cells, vol. 13, no. 5, pp. 781-793, 2013.
[12] H. Ozcan and I. Dincer, "Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification," International Journal of Hydrogen Energy, vol. 40, no. 24, pp. 7798-7807, 2015/06/29/ 2015. doi:10.1016/j.ijhydene.2014.11.109
[13] S. Zhang, H. Liu, M. Liu, E. Sakaue, N. Li, and Y. Zhao, "An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization," Applied Thermal Engineering, vol. 121, pp. 314-324, 2017/07/05/ 2017. doi:10.1016/j.applthermaleng.2017.04.066
[14] R. Singh and O. Singh, "Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle," Energy Conversion and Management, vol. 171, pp. 659-670, 2018/09/01/ 2018. doi:10.1016/j.enconman.2018.06.009
[15] S. Amicabile, M. Testi, and L. Crema, "Design and modeling of a hybrid reversible solid oxide fuel cell – organic Rankine cycle," Energy Procedia, vol. 129, pp. 331-338, 2017/09/01/ 2017. doi:10.1016/j.egypro.2017.09.202
[16] M. Khalili, F. Karimian Bahnamiri, and M. Mehrpooya, "An integrated process configuration of solid oxide fuel/electrolyzer cells (SOFC‐SOEC) and solar organic Rankine cycle (ORC) for cogeneration applications," International Journal of Energy Research, vol. 45, no. 7, pp. 11018-11040, 2021.
[17] P. Kumar, T. Choudhary, and M. Z. Ansari, "Thermodynamic assessment of a novel SOFC and intercooled GT integration with ORC: Energy and exergy analysis," Thermal Science and Engineering Progress, vol. 34, p. 101411, 2022/09/01/ 2022. doi:10.1016/j.tsep.2022.101411
[18] Z. Wang, H. Chen, R. Xia, F. Han, Y. Ji, and W. Cai, "Energy, exergy and economy (3E) investigation of a SOFC-GT-ORC waste heat recovery system for green power ships," Thermal Science and Engineering Progress, vol. 32, p. 101342, 2022/07/01/ 2022. doi:10.1016/j.tsep.2022.101342
[19] N. aghazadeh, S. Khalilarya, s. Jafarmadar, and A. Chitsaz Khoyi, "Thermoeconomic analysis of a novel trigeneration system based on solid oxide fuel cell and gas turbine with hydrogen fuel," Modares Mechanical Engineering, vol. 18, no. 7, pp. 119-130, 2018. [Online]. Available:mme.modares.ac.ir/article_10480_4d771504ddcd28037b4199740df767e6.pdf
[20] S. z. sajadi, J. Pirkandi, and M. Jahromi, "Electrochemical performance investigation of solid oxide fuel cell in micro-gas turbine hybrid systems to determine optimum fuel utilization factor," Modares Mechanical Engineering, vol. 16, no. 12, pp. 300-310, 2017. [Online]. Available:mme.modares.ac.ir/article_9571_4f649b16c76753a6ebd0c8f442020945.pdf
[21] M. Chahartaghi and B. Alizadeh-Kharkeshi, "Performance analysis of a combined cooling, heating and power system driven by PEM fuel cell at different conditions," Modares Mechanical Engineering, vol. 16, no. 3, pp. 383-394, 2016.
[22] J. M. De Escalona, D. Sánchez, R. Chacartegui, and T. Sánchez, "Part-load analysis of gas turbine & ORC combined cycles," Applied thermal engineering, vol. 36, pp. 63-72, 2012.
[23] S. Yousefizadeh Dibazar, g. Salehi, S. M. H. Sharifi, and M. Eshagh Nimvari, "Thermo-economic optimization of Regenerative Organic Rankine Cycle for Low grade Waste Heat Recovery using Genetic algorithm," Modares Mechanical Engineering, vol. 18, no. 8, pp. 193-201, 2018. [Online]. Available: mme.modares.ac.ir/article_10514_206bb45f944accb7a4cd1f135786c415.pdf
[24] A. Farsi, M. Ameri, and S. M. H. Mohammadi, "Combined production of distillated water and cooling by application of Supercritical carbon dioxide refrigeration in multi-effect-desalination systems," Modares Mechanical Engineering, vol. 16, no. 12, pp. 525-533, 2017. [Online]. Available: mme.modares.ac.ir/article_9593_fd11043c50c15f9e700a52b3f00136f8.pdf
[25] B. Alizadeh Kharkeshi, M. Mehregan, and M. Sheykhi, "Sensitivity analysis of energy, exergy, and environmental models for a combined cooling, heating, and power system at different operating conditions of proton exchange membrane fuel cell," Environmental Progress & Sustainable Energy, vol. 42, no. 5, p. e14129, 2023. doi:10.1002/ep.14129
[26] A. Bejan, G. Tsatsaronis, and M. J. Moran, Thermal design and optimization. John Wiley & Sons, 1995.
[27] P. Ahmadi and I. Dincer, "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, vol. 35, no. 12, pp. 5161-5172, 2010.
[28] A. Perna, M. Minutillo, E. Jannelli, V. Cigolotti, S. Nam, and J. Han, "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, vol. 231, pp. 1216-1229, 2018.
[29] T.-C. Hung, "Waste heat recovery of organic Rankine cycle using dry fluids," Energy Conversion and Management, vol. 42, no. 5, pp. 539-553, 2001/03/01/ 2001. doi:10.1016/S0196-8904(00)00081-9
[30] V. Dostál, M. Driscoll, and P. Hejzlar, "A Super Critical Carbon Dioxide Cycle for Next Generation Nuclear Reactors," 12/14 2011.
[31] S. Moslem Mousavi, M. Bagheri Ghanbarabadi, and N. Bagheri Moghadam, "The competitiveness of wind power compared to existing methods of electricity generation in Iran," Energy Policy, vol. 42, pp. 651-656, 2012/03/01/ 2012. doi:10.1016/j.enpol.2011.12.038
[32] L. Hatton et al., "The global and national energy systems techno-economic (GNESTE) database: Cost and performance data for electricity generation and storage technologies," Data in Brief, vol. 55, p. 110669, 2024/08/01/ 2024. doi:10.1016/j.dib.2024.110669
[33] M. A. Mahmood, P. Pérez de la Calle, J. M. Meneses Zuluaga, N. Massarotti, and C. Sanchez-Diaz, "Techno-economic evaluation of hydrogen refuelling station with on-site electrolysis production powered by photovoltaic solar energy for the railway sector," International Journal of Hydrogen Energy, vol. 138, pp. 802-822, 2025/06/16/ 2025. doi:10.1016/j.ijhydene.2025.05.094
[34] M. Zamani, R. Shafaghat, and B. Alizadeh Kharkeshi, "Numerical study of the hydrodynamic behavior of an archimedes screw turbine by experimental data in order to optimize turbine performance: The genetic algorithm," Journal of Applied and Computational Mechanics, vol. 9, no. 4, pp. 1060-1075, 2023