مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مقایسه فرایند شکل دهی غلتکی مرسوم و فرایند شکل دهی غلتکی انعطاف پذیر لوله

نوع مقاله : مقاله پژوهشی

نویسندگان
1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
2 دانشکده مهندسی مکانیک، دانشگاه علم و فرهنگ،تهران، ایران
3 دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران
4 گروه مهندسی مکانیک، دانشگاه ملی مهارت، تهران، ایران
10.48311/mme.2026.118307.82909
چکیده
این مقاله با تکیه بر یک الگوی گل توسعه‌یافته و مدل هندسی مبتنی بر منحنی اینولوت، رفتار تنش کرنش، نحوه انتقال تدریجی بارگذاری و احتمال بروز عیوب هندسی و مکانیکی را در دو فرایند مذکور بررسی می‌کند. هدف، ارائه یک روش تحلیلی–عددی برای مقایسه دقیق مراحل شکل‌دهی، تعیین موقعیت و زاویه غلتک‌ها و تحلیل اثر چیدمان پیشنهادی در بهبود پاسخ مکانیکی ورق است. روش کار شامل توسعه الگوی گل، استخراج معادلات اینولوت، تعیین پیکربندی غلتک‌های پنج‌ ایستگاه با حل عددی در متلب و تحلیل تنش کرنش با مدل سه‌بعدی آباکوس است. نتایج نشان داد که بررسی کرنش معادل در ایستگاه نخست بیانگر آن است که فرایند شکل دهی غلتکی مرسوم ۱۵ درصد کرنش بیشتری در ناحیه لبه بیشتر از فرایند انعطاف پذیر ایجاد می‌کند. همچنین کرنش طولی در نواحی بحرانی مانند لبه، در فرایند شکل‌دهی غلتکی انعطاف‌پذیر ۷9 درصد کمتر از فرایند شکل‌دهی غلتکی مرسوم است. از نظر تنش نیز متوسط مقادیر به‌دست‌آمده نشان می‌دهد که فرایند شکل‌دهی غلتکی انعطاف‌پذیر 27 درصد کاهش تنش نسبت به مرسوم ایجاد می‌کند. فرایند شکل‌دهی غلتکی انعطاف‌پذیر با حذف جهش‌های ناگهانی قطر، کنترل تدریجی‌تر انحنا و توزیع یکنواخت‌تر بارگذاری، نه‌تنها کرنش‌های بحرانی را کاهش می‌دهد، بلکه احتمال بروز عیوبی مانند ترک لبه، نازک‌شدگی موضعی و اعوجاج مقطع را نیز به‌طور مؤثری کم می‌کند
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of conventional roll forming process and flexible pipe roll forming process

نویسندگان English

Zeinab Jabaseh 1
Hassan Moslemi Naeini 1 2
Siamak Mazdak 3
Yaghoub Dadgar Asl 4
1 Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mechanical Engineering, Faculty of Engineering, University of Science and Culture, Tehran, Iran
3 Department of Mechanical Engineering, Arak University, Arak, Iran
4 Department of Mechanical Engineering, Technical and Vocational University(TVU), Tehran, Iran
چکیده English

This paper, relying on a developed flower pattern and a geometric model based on the involute curve, investigates the strain stress behavior, the gradual load transfer and the possibility of geometric and mechanical defects in the two processes. The aim is to present an analytical-numerical method for accurately comparing the forming steps, determining the position and angle of the rollers and analyzing the effect of the proposed arrangement on improving the mechanical response of the sheet. The working method includes developing the developed flower pattern, extracting the involute equations, determining the configuration of the five-station rollers by numerical solution in MATLAB and analyzing the stress-strain analysis with a 3D Abaqus model. By comparing the cross section of sheet obtained from the method and that of another reference, validation of the method was confirmed. The equivalent strain study at the first station indicated that the conventional roll forming process produces 15% more strain in the edge area than the flexible process. Also, the longitudinal strain in critical areas such as the edge is 79% lower in the flexible roll forming process than in the conventional roll forming process. The average values of stress obtained show that the flexible roll forming process produces a 27% reduction in stress compared to the conventional one. By gradual control of curvature and more uniform distribution of loading, in the flexible roll forming process not only reduces critical strains, but also effectively reduces the possibility of defects such as edge cracking, local thinning and cross-sectional distortion.

کلیدواژه‌ها English

Flexible Roll Forming
Involute Curve
Pipe Forming
ERW Pipe
Flower Pattern Design
[1] M. Tanimoto, I. Kawata, O. Sotokawa, T. Nakaji, T. Magatani, and E. Tsuru, “Outline of new forming equipment for Hikari 24-inch ERW Mill,” Nippon Steel Technical Report, no. 90, pp. 122–126, 2004.
[2] M. Safari and J. Joudaki, “Ovality and bow defect of pre-punched sheets in roll forming of trapezoidal sections,” International Journal of Engineering, Series A, vol. 31, no. 9, pp. 1123–1128, 2018. doi: 10.5829/ije.2018.31.07a.17
[3] M. Karimi Firouzjaei, H. Moslemi Naeini, H. Farahmand, B. Abbaszadeh, and M. Kasaei, “Numerical and experimental investigation on flower pattern design methods in cold roll forming process of a high strength steel pipe,” Modares Mechanical Engineering, vol. 17, no. 10, pp. 259–270, 2018. (in Persian) doi: 20.1001.1.10275940.1396.17.10.15.3
[4] D.-J. Li, L.-Q. Xu, L.-J. Li, C.-F. Yue, W.-J. Zhou, and C.-L. Zhang, “Finite element simulation for straightedge lineal roll forming process of high frequency welding pipe,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 19, no. 2, pp. 743–751, 2025.
[5] X. Deng, S. Hui, X. Ye, W. Ye, Y. Yu, and Y. Li, “Research on flower pattern and roll positioning optimization for roll forming process of TA4 coiled tubing,” Materials, vol. 17, no. 24, Art. no. 6164, 2024. doi: 10.3390/ma17246164
[6] C. Kang, B. Sun, X. Zhang, and C. Yao, “Research on the mechanism and processability of roll forming,” Materials, vol. 17, no. 13, Art. no. 3126, 2024. doi: 10.3390/ma17133126
[7] T. Suckow, J. Schroeder, and P. Groche, “Roll forming of a high strength AA7075 aluminum tube,” Production Engineering, vol. 15, no. 3, pp. 573–586, 2021. doi: 10.1007/s11740-021-01046-2
[8] M. M. Kasaei, H. M. Naeini, B. Abbaszadeh, M. Mohammadi, M. Ghodsi, M. Kiuchi, et al., “Flange wrinkling in flexible roll forming process,” Procedia Engineering, vol. 81, pp. 245–250, 2014. doi: 10.1016/j.proeng.2014.09.158
[9] M. Kasaei, H. M. Naeini, B. Abbaszadeh, M. Silva, and P. Martins, “Flexible roll forming,” in Materials Forming and Machining, Elsevier, 2015, pp. 51–71. doi: 10.1016/B978-0-85709-483-4.00003-X
[10] H. Badparva, M. Kasaei, and B. Abbaszadeh, “Investigation of parameters affecting deformation length in flexible roll forming process,” 2020. (in persian) doi: 20.1001.1.10275940.1400.22.1.3.4
[11] R. Rezaei, H. Moslemi Naeini, R. A. Tafti, M. M. Kasaei, M. Mohammadi, and B. Abbaszadeh, “Effect of bend curve on web warping in flexible roll formed profiles,” The International Journal of Advanced Manufacturing Technology, vol. 93, no. 9, pp. 3625–3636, 2017. doi: 10.1007/s00170-017-0784-1
[12] Cheng, J. Cao, J. Zhao, J. Liu, R. Zhao, and S. Liu, “The flower pattern and rolls design for ERW pipes with the different specification in the flexible roll forming process,” Thin-Walled Structures, vol. 154, p. 106809, 2020. doi: 10.1016/j.tws.2020.106809
[13] F. Wang and A. Okamoto, “Method for roll forming steel pipes, and equipment for same,” U.S. Patent US6212925B1, 2001.
[14] R. Kuramoto, A. Okamoto, and T. Tomino, “Forming roll, forming process and its apparatus in the pipe mill,” U.S. Patent US4770019A, 1988.
[15] J. Cao, X. Wang, K. Ruan, J. Cheng, Z. Wei, and R. Zhao, “Numerical simulation research on UDF flexible roll forming of multi-specification thin-walled circular tubes,” Int. J. Adv. Manuf. Technol., vol. 127, no. 9, pp. 4503–4517, 2023. doi: 10.21203/rs.3.rs-2425277/v1
[16] S. Yu and N. Jun, “Adjustment of rollers in the flexible roll forming unit for the production of different types of straight pipes,” DEStech Trans. Eng. Technol. Res., 2017.
[17] Z. Wei et al., “Research on flexible roll forming process for manufacturing thin-walled round pipes with multi-specification,” J. Manuf. Process., vol. 152, pp. 180–204, 2025. doi: 10.1016/j.jmapro.2025.08.005
[18] Q. Bui and J. Ponthot, “Numerical simulation of cold roll-forming processes,” J. Mater. Process. Technol., vol. 202, no. 1–3, pp. 275–282, 2008. doi: 10.1016/j.jmatprotec.2007.08.073