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This paper addresses the robust control of a solid-state wave gyroscope (SSWG), modeled as a 2D Van der Pol
oscillator. The objective is to achieve precise trajectory tracking in the presence of external disturbances and with
reliance on estimated velocities. The performance of two sliding mode control (SMC) strategies using a high-gain
observer (HGO) to estimate unmeasurable states is investigated and compared: a first-order Integral SMC (I-SMC) and
a second-order Terminal Super-Twisting SMC (T-ST-SMC).

Simulation results demonstrate that while the I-SMC achieves tracking with laudable large disturbance rejection, it
suffers from chattering in the control signal. In contrast, the T-ST-SMC provides a superior response by effectively
mitigating chattering, yielding a smooth control action, enhanced error convergence, and greater robustness.
Quantitative analysis reveals that the T-ST-SMC improves tracking accuracy by 46.5% and reduces control signal
chattering by 39% compared to the I-SMC. A notable advantage of the T-ST-SMC is the elimination of the need to
predefine an upper bound for disturbances.

The study concludes that the second-order T-ST-SMC offers a superior solution for the robust control of this SSWG
model. It is demonstrated that the proposed feedback structure provides disturbance rejection under the condition of a
defined, nonzero quadrature. As zero quadrature renders the control scheme flawed, the paper posits that for practical
implementation, this control logic should be active when extreme quadrature values are present, and switching to an
alternative quadrature suppression scheme when it approaches zero.
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1- Introduction

Inertial navigation is a fundamental technology for accurate and
autonomous positioning. The successful operation of modern systems
relies on the use of advanced navigation systems, which in turn depend
on high-precision strapdown inertial navigation systems (SINS). It
operates by using internal accelerometers and gyroscopes to
continuously calculate a vehicle’s position, velocity, and orientation.
A gyroscope is a sensor that measures angular velocity. While various
gyroscope technologies like dynamically-tuned gyros (DTG), ring
laser gyros (RLG), and fiber optic gyros (FOG) are used, the Solid-
State Wave Gyroscope (SSWG) stands out as a promising technology
for future development [1,2,3].

The fundamental element of a SSWG is a high-quality piezoelectric
or magneto-strictive solid-state waveguide, engineered to support the
propagation of standing acoustic or spin waves. Unlike traditional
gyroscopes with mechanical rotors, the SSWG utilizes elastic
vibrations within its solid medium, where the waveguide is outfitted
with transducers that monitor and control the wave vibrations. The
operating principle relies on the inertia effect of these standing wave
vibrations, detecting changes induced by rotation through the Coriolis
effect on the wave patterns. This operational principle offers the
advantage of engaging in elastic deformations without physical wear
and tear, eliminating moving parts, subsequently increasing
robustness, reliability and extending the device's operational life
[4,5,6]. Research [7] demonstrates how the inherent geometrical
nonlinearity of the resonator can be leveraged to naturally stabilize the
gyroscope, combining the benefits of both positional resonant

excitation and parametric resonance.

The behavior of these resonators is often studied using the Van der
Pol oscillator as a mathematical model [8]. The evolution to two-
dimensional (2D) and three-dimensional (3D) Van der Pol oscillator
models has allowed for a more comprehensive understanding and
control of the gyroscope’s dynamics. Research by Zhuravlev [9]
further explores this by constructing and proving the stability of a
control system for an isotropic oscillator, ensuring that an elliptical
trajectory with a non-zero quadrature is maintained. Achieving the
high precision necessary for navigation-grade sensors requires
effective control strategies. Recent advancements have focused on
enhancing these strategies through improved mathematical modeling
and robust control techniques. For instance, new regularization
methods and scale factor analyses have been proposed to refine SSWG
dynamics [10,11]. Furthermore, advanced approaches such as
adaptive recursive terminal sliding mode control and disturbance
observers have been developed to handle model uncertainties and
improve tracking precision [12,13,14]. The goal of such control is to
ensure the oscillator reaches a stable operational mode as quickly as
possible. Research [15] has shown that feedback control based on the
total energy of the oscillations is more effective than traditional
amplitude-based feedback. A 2D oscillator, describes an elliptical
trajectory in a plane. An extended 2D Van der Pol oscillator model
with external control is now effectively used to study and enhance the
performance of the new generation of SSWGs [16]. This concept has
been extended to three dimensions [17], which propose a 3D
integrating gyroscope based on the precession of standing waves in a
spherically symmetric solid, likening it to a generalized Foucault

pendulum.

In this paper, the feedback control scheme for a 2D van der pol
oscillator proposed by Zhuravlev [16] is controlled using sliding mode
control (SMC) algorithms subject to disturbance and operational
limitations. First, the feedback control parameters are derived from
the evolution of the dynamics of the extended 2D Van Der Pol
oscillator, then, the control logic for two, dual input sliding mode
variants is derived, integral SMC (I-SMC) and terminal super twisting
SMC (T-ST-SMC) [18]. As subject to real-world applications, where
only the deformations of the oscillator are observed, a high gain
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Fig. 1 2D van der pol oscillator.

observer [19], upholding the separation principle, is put to use from
the dynamics of the system and is incorporated within the control
logic. At last, the design is put to test in simulation with the following
constraints: the dynamics are updated every 0.001s, observation and
control are carried out every 0.01s, saturation on the control inputs and
an aggressive disturbance for a period to test robustness.

2- Methodology

2-1- Deriving the basis of infinitesimal evolutions

The methodology presented here is from the works of Zhuravlev
[8,9,15,16]. First, Consider the extended 2D Van Der Pol oscillator
[16] with the form:

Gi+q=p(l—qi—aq5 -4 —ddq

. 2 ian s 1
G2 +a, =p(l—qf —af —4f — 44,
With Energy and quadrature being:
1 2L
E=2(a+az +4i +dz) )
K =014 — 4201
Proceed by writing the dynamics in the form:
41+ q1 = 010491, 92,41, G2) 3)

G2 + 92 = Q2(91, 92,41, 42)

In free mode (Q, = 0,Q, = 0), the oscillator describes an elliptical
trajectory in the (q, q,) plane with arbitrary principal semi-axes and
arbitrary inclination of the major semi-axis relative to the q,- axis
which is depicted in Figure 1, regarding the electrode configuration in
0° — 45° placements.

Forces on the right-hand side of the (3) are interpreted as follows:
Perturbing forces: Deform the elliptical trajectory of free mode
(changing semi-axis lengths, ellipse orientation, or disrupting its
shape).

Control forces: Stabilize a given elliptical trajectory in a specific
sense.

The general solution of (3) in free mode defines the parametric
equations of the elliptical trajectory:

q, = x,cost + xzsint
q, = X, cost +x,sint

“

The arbitrary constants (x,x,,X3,%,)1in (4) are treated as slow
varying phase variables when Q;, Q, # 0 and are small compared to
the restoring force. Thus, the oscillation energy, angular momentum
and ellipse area are:

1 1
Ezi(xf+x§+x32+xf):5x2 5)
K = x1x4 — X3%3 (6)

1 2m
wrke =3 [ @, - apdnde =k ™
0

where 7 is the major semi-axis and & is the minor semi-axis.
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To correctly formulate feedbacks, controlling energy, quadrature,
precession, or oscillation frequency, a basis for infinitesimal
evolutions of the elliptical trajectory must be constructed.

A type of phase variables, known in celestial mechanics as orbital
elements are proposed as (44,92, 91, 92) = (1, k, 0,7):

q, =rcos(t + 1) cosf — ksin(t + 7) sin @
- : : ®)
q, = rcos(t +1)sinf + ksin(t + 1) cos 6
Where r is the Major semi-axis of the ellipse, £ is the Minor semi-axis,
6 is the Inclination angle of the major semi-axis to the g;-axis and 7 is
the Initial position (at t =0) of point (q,,q,) on the elliptical
trajectory.
Rearranging, the slow variables are written as:

X; =rcostcosf —ksintsinf
X, =rcostsinf + ksintcos
X3 = —rsintcosf — k costsinf
X, = —rsintsinf + k cost cos §

©

Identification of the resonator parameters were carried out in a study
[20], though not investigated as it is not in the scope of this paper.
If (Q,,Q;) =0, each ellipse in configuration space q = (q4,q;)
corresponds to a constant x = (x, X,, X3, x,) in phase space.

If Q # 0, the point x(t) moves in phase space. In the configuration
space q = (q4,9,) , this corresponds to evolution of the initial
trajectory—ellipse or line segment. Analysis is carried out for a linear
trajectory since in applications this is often required. Stabilizing
elliptical trajectories with non-zero quadrature is essential for
pendulum-type inertial navigation systems [8].

Four elementary evolutions exist:

e  Form precession: Rotation of a line segment in the g-
plane such that a rotating coordinate system exists where
the segment is stationary.

e Amplitude variation: Change in segment length.

. Frequency variation: Change in oscillation frequency
along a fixed segment.

e  Form disruption: Evolution irreducible to the preceding
evolutions.

Each evolution type corresponds to specific directions of x(¢) in phase
space. Precession direction is formulated by Appling rotation x — y
(angle a):

( cosa sina)(x1 cost +x3 sint) _ (y1 cost + y;sin t) (10)

—sina cosa’/ \x,cost + x,sint ypcost +y,sint
dy

e = da la=o = {x2,—%1, %4, —%3}. (1n
dy

e = El[t:() = {x1, %3, %3, %4 }- (12)
dK

€3 = Ix le=o = {4, =3, =2, %, }. (13)
dy

€y = Elr:o = {x3,%4 , —x1, —X3}. (14)

Where (11-14) by order are precession, amplitude variation, Form
disruption (quadrature), and Frequency change.

2-2- Deriving the Control scheme

Taking the derivative of (x4, x5, X3, x,), the explicit time-dependent
resulting equation is averaged over time, yielding the general linear
forces as:

(gl)=(C+N+H)(Zl)+(D+F+G) (21> (15)
2 2 2
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Table 1 Corresponding Forces
force Precession(e;) Amplitude(e;) Quadrature(e;) Frequency(e,)

C 0 0 0 —c/2
N 0 0 —n/2 0
D 0 d/2 0 0
r /2 0 0 0

Where the matrices correspond to forces in the form of:
. C=cE Spherical potential.

. N=n (_01 é) Circular.
_ 4, (cos2a sin2a . .
. H=h (sin 20 —cos Za) Hyperbolic potential.
. D=dE Spherical dissipative.
. =y (_01 (1)) Gyroscopic.
_ (cos2f  sin2f o
. =g (sin 28 —cos Zﬁ) Hyperbolic dissipative.

H and G are unused in control. Mapping forces to X (x):
c n d Y

C:—-e, N:i-——ey, Dize, T=ce (16)
Thus, as proposed by Zhuravlev [8], the control forces will be:
o =alls M) )
5 R T A )
s R 1 )
ol=n 15 S o)

Where by order, the forces are total vibration energy stabilization
(amplitude), frequency control, precession control and quadrature
stabilization. the parameters n & d are:

K
n=pyp d=ps(1-2E) @D

Thus, taking the feedback Control forces into account and
incorporating them to the dynamics (1):

. . (1 . K )
Q1+Q1:#3(__E)Q1_HZ_QZ_V‘72+CQ1
2 E 2
) 1N K @2)
G +q =u3(§—5)qz+uzgq1+yq1+cqz

Where pi; = is interpreted as a constant energy feedback

H—H3
2
subtraction parameter corresponding to an amplitude control scheme
which is not investigated here. A study was carried out [5] suggesting
that the precession angle 8 grows linearly with y which is an obvious
claim regarding the provenance of the physical phenomena. If it is
necessary to provide a given precession of the oscillation form with

an angular velocity o, then y = m(w - 9).

3- Basis of Control using sliding mode

The motive for controlling this scheme provided by Zhuravlev [16] is
that the y parameter introduces an imbedded external disturbance into
our dynamic, namely, the induced angular velocity which it’s sensing
is the purpose of the SSWG.

We seek to have the 2D oscillator track the solution to § + q = 0 for
given initial conditions regarding a tolerable bound for quadrature,
with robustness to an unknown parameter y within a predefined
bound, which is a nonlinear tracking control problem of preserving a
desired amplitude and frequency.

In this study, suitable variants of SMC are implemented and tuned in
accordance to the problem definition. For emulating the reality of the
problem, the model dynamic is updated every 0.001s and the control
input and observation are carried out every 0.01s, and for robustness
evaluation, from 10s to 10.5s, 25s to 25.5s, 40s to 40.5s, the
disturbance takes aggressive values which were not expected for in
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the control scheme, and a saturation bound constrains the final control
output.

Among the feedback forces which form (22), 5 could be interpreted
as a constant value, resultant of feedbacking the Energy model of the
system back into the extended 2D van der pol equations. y is the direct
result of external rotation of the system and interpreted as disturbance,
as the goal is to keep the oscillator tracking a stationary predefined
trajectory. The other two feedback forms left, namely ¢ and p, are
taken as the control input due to both being explicit external feedbacks
and having a relatively workable structure, all the while perceiving u,
as a robustness parameter and an embedded quadrature regulation
factor, as the structure of this feedback dynamic is sensitive to
aggressive quadrature values.

3-1- Sliding mode control derivation for the given dynamics
The system is quadratic (two inputs and two dynamic blocks); thus,
the equations are derived as follows:

2
G =fH)+ Z.%j(x)uj
=

2 (23)
G, = fo(X) +Zgzj(X)uj
j=1
q® =f00) +Gu 4)
Where:
(1 . .
[0 #3(§—E)q1—yqz—q1
f:[fz(X) =l N 25)
#3(§—E)qz+yq1—qz
1
R /'[3<E_E)‘?1_Q1
F=1 A (26)
“'S(E_E)‘.Iz_‘h
Clf_ 7= 1921
F=|f = f| = Vimax ™ @7)
K
19 9121 _ q1 _E‘h I
=lgn od=| & | *=ll (28)
q> E‘h

With Integral and Terminal sliding surfaces by order:
f1,2 = q1,2 ~ Qaesired, , 29)

2

d t
S =(E+Ai> ffldt—)sl_z
0

=%, + +211,%,

t

+ 2, f % dt — #,,(0)
0

- 221,27?1,2 (O)

(30

. g, P
S12 = Xip + BEL, = %1, + Psign(Fy,)|% |7 €Y
The Lyapunov candidate function is introduced as:
1 d
V:ESZHE(V):ss'S—nlsl (32)

Where with trivial derivation, the control logics are as:
e Integrator with a continuous switching law:

_ -1 7 4 &
u=aG¢ (_f + Qdesiredlyz - 211,23‘1,2 — Uswitch—1I

- liz (551,2 - 21'2 (0)))
. _ [Klsat(sl/lp)
switch—I I(zsat(sz/(l’)
Kiz =2 F+n,

(33)

e  Terminal Super Twisting with a small parameter é = 0.01
to prevent singularity:
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_ 2, . ﬁp Z JUR Y .
u=aG¢ t (_f + qdesiredl}z - 7x1,2(|x1,2|q + E)
- uswitch—T)

T (34)
kl\/s_lsat(sl/dﬂ + sz sign(s,)dt

Uswitch—-sT =

lis—zsat(sz/¢) +k, J-Tsign(sz)d‘r
| A |

3-2- HGO for attaining the dimensionless velocities

In real applications, online values of q;& g, are observed, but the
values of q; & ¢, which are explicitly utilized in the control schemes
(33) & (34) are not directly accessible. For the purpose of attaining
these two states and with respect to the scheme of the dynamic model
(22), a high gain observer (HGO) [19] is proposed. The advantage of
using this observer is that it holds the principle of separation of
estimation and control. This validity arises from the singular
perturbation nature of High-Gain Observers; for sufficiently high
gains, the observer error dynamics become fast enough to be time-
scale separated from the slower system kinetics, effectively
recovering the performance of the state feedback controller [19],
leaving the proposed controlled scheme (22) unhinged in terms of
stability analysis by the additional nonlinear observer.

The HGO is proceeded by:

Z q1
_ % _ 192
Z=\z|= 0 (39)
Zy 92
z3 +z; = Uy(21, 23, 23, Za, 13, 12, Y, ©)
. ; (36)
Zy + 2y = Uy(24, 23, 23, Z4y 3, U2, ¥, €)
With the observations as:
z
v =[] 67
PR
7=, |=rczu 38
=v, -z |=fED (38)
U, — 2, ]
Z=f(2,0)+H(y-9) (39)
iy .
€
0 &
H= € 40
=la, (40)
e 0
a;
2l

Where 0 < € < 1 is the tuning parameter and the a,, a, coefficients
are chosen so that s% + a,s + @; = 0 is Hurwitz.
The observer dynamics will be:

i s, T N
2 =13 +?(3’1 —2)

i s % N
Z :Z4+?(}’2 —23)

A N a; A D
Zz=-2;+ Ul(Zhu3r#2rc) + ?(Jﬁ —2)
i N PP a; N
2y = =2+ Us(Z, fia, phy, 0) + 6_2(3’2 —23)
And the estimation error as:
ay
€3 _?91
ay
€y —?62
ée= a, (42)
51 —Zel
a;
52 —Zez
_[61] _ |Ur(Z, tha, 2, ¥, €) — Us(Z, 3, 1z, €)
=5 = ; o (43)
2 U (Z, iz bz, ¥, €) — Up(Z, s, 2, ©)
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4- Simulation results
The parameters of energy feedback s = %, HGO a; =1, a, = 2,

€ = 0.05, controller saturation limit as 25, ¢ = 0.5 and the
disturbance y which is:

0 t <5s
y =1{1505in(100t) 10s, 25s, 40s, half a second (44)
2sin(100¢) all other t

are all held constant across both simulations. This specific signal
volatility in the disturbance is what the system showed the most
sensitivity to, thus implemented to conduct the disturbance rejection
study. The predefined disturbance bound y;,,, = 3 is introduced for
the I-SMC. The controller and observer activation time is every 0.01s,
and the dynamic’s update time is every 0.001s.
A quantitative measure for relative performance is introduced as:
b Loll(ll’{:m - I_IZIII’ST’SMC 45)
ollgllsMe
Where { = e(t); Au(t). Tracking accuracy is evaluated using the
accumulated error norm, while chattering intensity is assessed by
summing the magnitude of changes in the control effort between
consecutive steps. The primary objectives are to achieve robust
reference tracking despite external disturbances and to rely solely on
observable system states by using an HGO.
Figure 2 illustrates the performance of the I-SMC. The reference
tracking error, shown in Figure 2(a), demonstrates that the controller
effectively forces the system states to follow the desired trajectory up
to some extent of an oscillating error. However, noticeable deviations
in tracking error occur during the aggressive disturbance periods (10-
10.5s, 25-25.5s, and 40-40.5s) which is also present for the T-ST-
SMC case. The control inputs, depicted in Figure 2(b), exhibit
significant chattering. This high-frequency switching is a known
characteristic of first-order sliding mode control. The control effort
also reaches the saturation limit of 25 during the disturbance intervals,
indicating the controller is working at its maximum capacity to
counteract these events. The sliding surfaces for the I-SMC, seen in
Figure 4(a), show that the system trajectories are driven to and
maintained on the sliding manifold, although with some oscillation,
particularly when large disturbances are introduced. A key deficiency
of I-SMC here is pre defining the disturbance bound y, which is not
present for the T-ST-SMC.
The T-ST-SMC's performance, detailed in Figure 3, presents a more
refined control action. The reference tracking errors in Figure 3(a) are
visibly smaller than those of the I-SMC. This suggests a higher degree
of robustness. A significant advantage of the T-ST-SMC is the
reduction in chattering, as seen in the control effort plot in Figure 3(b).
The super-twisting algorithm, a second-order sliding mode technique,
smooths the control signal by integrating the discontinuous term,
leading to a continuous control action that is more practical for
implementation. While the control inputs are still highly active, the
high-frequency oscillations are less pronounced compared to the I-
SMC.
As was the incentive of the study to delineate robustness of the said
control logics to large external disturbances, both SMCs depicted
close, acceptable behavior. In further investigation of SMC variant’s
result discrepancies, it is observed that the T-ST-SMC yielded a
46.5% improvement in tracking accuracy and a 39% reduction in
control signal chattering relative to the I-SMC.
Figure 3(c) highlights the controller's ability to manage the quadrature
evolution, keeping it close to the reference value even in the presence
of disturbances. This is crucial for the proper function of the
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Table 2 Simulation control parameters

SMC/ Params P—q B kq, k; A12.M12
ISMC - - - 3.5-10
T-ST-SMC 6-5 12.5 9-2 -

gyroscope model. The observer performance error which is consistent
for both cases, shown in Figure 3(d), remains bounded and relatively
small, validating the effectiveness of the High-Gain Observer in
estimating the unmeasurable states. The sliding surfaces for the T-ST-
SMC in Figure 4(b) appear smoother than those for the I-SMC,
indicating a more stable and less agitated response on the sliding
manifold. The terminal sliding mode aspect of this controller is
designed to ensure faster, finite-time convergence of the tracking
error.

5- Conclusion

This study successfully demonstrated the robust control of a 2D Van
der Pol oscillator model for a SSWG. The control objective was to
ensure precise trajectory tracking subject to a bounded, defined,
nonzero quadrature in the presence of significant external
disturbances and with reliance on estimated velocities.

As it is apparent with respect to the figures and the quantitative
evaluation in the discussion, both I-SMC and T-ST-SMC achieved
tracking with robustness to large disturbances. Although both logics
had marginally similar behavior in response to the large disturbances,
the T-ST-SMC demonstrated a better performance in terms of overall
tracking precision and control input smoothness. The first-order I-
SMC exhibited sharp, high-frequency input variations, known as
chattering, and struggled to completely suppress its sliding surfaces.
In contrast, the second-order T-ST-SMC effectively mitigated these
issues, providing a smooth and continuous control signal while
demonstrating superior error handling and convergence on the sliding
surfaces. Quantitatively, this proposed strategy yielded a 46.5%
improvement in tracking accuracy and a 39% reduction in control
signal chattering relative to the I-SMC. A core advantage of the
terminal super twisting variant over the I-SMC is the elimination of
the need to predefine a disturbance bound Y¥p,,, during the
implementation of the control logic. Despite this, the T-ST-SMC
showcased comparatively superb performance, indicating a higher
degree of robustness in implementation.

In conclusion, this work demonstrates that second-order SMC, and
particularly the Terminal Super-Twisting variant, offers a superior
solution for the robust control of SSWGs subject to large disturbances.
It successfully addresses the dual challenges of aggressive external
disturbance rejection and chattering elimination while operating with
estimated states. The claim is that in accordance to the proposed
feedbacks, if a defined nonzero quadrature; as zero quadrature renders
this papers control scheme deficient as only one input remains subject
to the assumptions made; is tolerated for a period before switching to
conventional solutions for quadrature mitigation in literature, this
closed loop system rejects disturbances with precision, obliged to the

contribution of the feedback with the form p, gqn.

Future work could involve applying perturbation analysis methods to
further investigate the analytical properties of the feedback forms.
Additionally, the extension of the control framework to three-
dimensional models and the integration of adaptive observation
schemes may be considered.

Ethics Approval:

The scientific content of this article is the result of the authors’
research and has not been published in any Iranian or international
journal.

Conflict of Interest:
There are no conflicts of interest to declare.

Volume 26, Issue 04, April 2026



238

Seyed Ali Reza Hosseini et al.

L I L L L L L

10 15 20 25 30 35 40
Time (s)

(@)

45 50

Fig.2 I-SMC - (a) reference tracking error (b) control inputs

021 T
0.15 b
RECANS .
0.05 |- ]
0 — Apoee
k’ L \. 1 L L L 1 L L
0 5 10 15 20 25 30 35 40 45 50
Time (s)
()
02 §
0.1 a
JNTIR YR LYY R R TR | WL TRTRTIgT g Y W TR T T Y
e LAl Uik Al TR LA LA R AL Al
X oof 1
-0.1F E
-0.2 1
quarature evolution
reference quadrature
-0.3 t :
0 10 20 30 40 50
Time (s)
(©)

20 25 30
Time (s)

(b)

35

40

45

Fig.3 T-ST-SMC - (a) reference tracking errors (b) control effort (¢) quadrature evolution (d) observer performance error.

Modares Mechanical Engineering

Volume 26, Issue 04, April 2026

30 35 40 45
Time (s)
(b)
0.2, T T T T T T T T
_oaf 8
S
0
. . . . . . . .
0 10 15 20 25 30 35 40 45 50
1 T T T T T T T 5
3 h
! 5 r
) 1
&
2 E
s L I L L I L L L |
0 10 15 20 25 30 35 40 45 50
0.1 T T T T T T T T
_ 005 8
S
0
. .
[ 10 15 20 25 30 35 40 45 50
T T T T T T T T
A ) |
2 . . . . . . . ,
0 10 15 20 25 30 35 40 45 50
Time (s)
(d)



239

2 i
4 j
®w o
-1 4
2 L L L L L 1
0 5 10 15 20 25 30 35 40 45 50
o j
4 i
5
0
-1 4
0 5 10 15 20 25 30 3 40 45 50
Time (s)
(@)
Fig.4 Sliding surfaces — (a) I-SMC (b) T-ST-SMC.
References
[11 A. A. Maslov, D. A. Maslov, I. G. Ninalalov, and 1. V.

[10]

[11

—

[12]

Merkuryev, “Hemispherical Resonator Gyros (An Overview of
Publications),” Gyroscopy and Navigation, vol. 14, no. 1, pp. 1—
13, 2023. doi: 10.1134/s2075108723010054

V. Ph. Zhuravlev, S. E. Perelyaev, B. P. Bodunov, and S. B.
Bodunov, “New-Generation Small-Size Solid-State Wave
Gyroscope for Strapdown Inertial Navigation Systems of
Unmanned Aerial Vehicle” in Proc. 24th Saint Petersburg
International Conference on Integrated Navigation Systems
(ICINS), 2017. doi: 10.23919/ICINS.2019.8769344

S.E. Perelyaev, S.B. Bodunov, and B.P. Bodunov, “Navigation
Grade Solid-State Wave Gyro for Air-Space Applications”
in 2022 29th Saint Petersburg International Conference on
Integrated Navigation Systems (ICINS), Saint Petersburg,
Russia, 2022, pp 1-7.
doi: 10.23919/ICINS51784.2022.9815352

S.E. Perelyaev and B.P. Bodunov, “Solid-state wave gyroscope:
A new-generation inertial sensor” in Proc. 24th Saint Petersburg
International Conference on Integrated Navigation Systems
(ICINS), 2017. doi: 10.23919/ICINS.2017.7995651

Y. Tao, X. Xiang, and Y. Wu, “Design, Analysis and
Experiment of a Novel Ring Vibratory Gyroscope” in 2011
IEEE International Conference on Mechatronics and
Automation (ICMA), 2011, pp. doi: 10.1016/j.sna.2011.04.039

T. Yi, “A Novel Cupped Solid-State Wave Gyroscope” in Proc.
Trans Tech Publications Ltd., 2012.
doi: 10.4028/www.scientific.net/ AMM.110-116.715

D. A. Kovriguine, "Geometrical nonlinearity stabilizes a wave
solid-state gyro" Archive of Applied Mechanics, vol. 84, no. 2,
pp. 159-172, 2014. doi: 10.1007/s00419-013-0791-0

V. F. Zhuravlev, “Van der Pol’s controlled 2D oscillator” Rus.
J. Nonlin. Dyn., vol. 12, no. 2, pp. 211-222, 2016.K. Elissa.

V. Ph. Zhuravlev, “On the Stability of Control of an Inertial
Pendulum-Type System” Mechanics of Solids, vol. 53, no. 5, pp.
489-491, 2018. doi: 10.3103/S002565441808022

D. A. Maslov, "The holomorphic regularization method of the
Tikhonov system of differential equations for mathematical
modeling of wave solid-state gyroscope dynamics," Russian
Journal of Nonlinear Dynamics, vol. 21, no. 2, pp. 233-248,
2025. doi: 10.20537/nd250211

A. A.Maslov, D. A. Maslov, and 1. V. Merkuryev, "Scale factor
of the solid-state wave gyroscope operating in the mode of a
compensation-type angular rate sensor," Gyroscopy and
Navigation, vol. 15, no. 4, pp. 297-304, Mar. 2025. doi:
10.1134/S207510872570004

L. Laiwu, X. Chen, and Y. Liu, "Adaptive recursive terminal
sliding mode control for MEMS gyros using improved neural
network with constrained input mapping," IEEE Access, vol. 13,
pp. 71930-71942, 2025. doi: 10.1109/ACCESS.2024.3511234

Modares Mechanical Engineering

Observer-Based Robust Disturbance Rejection for a Van der Pol Gyroscope Model

Sy

Sy

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

'y A
1
R . . I . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time (s)
(b)

R. Zhang, B. Xu, S. Li, and G. Gao, "Recursive integral terminal
sliding mode control with combined extended state observer and
adaptive Kalman filter for MEMS gyroscopes," Microsystem
Technologies, vol. 30, no. 2, pp. 1-12, 2024. doi:
10.1007/s00542-023-05512-9

Z. Wen, Y. Zhang, and H. Wang, "Sliding mode control for
MEMS gyroscopes using modified neural disturbance
observer," in 2024 36th Chinese Control and Decision
Conference (CCDC), IEEE, pp. 1245-1250, May 2024. doi:
10.1109/CCDC58219.2024.10619876

V. F. Zhuravlev, “On the Formation of Feedbacks in the Van der
Pol Spatial Oscillator” Mechanics of Solids, vol. 55, no. 7, pp.
926-931, 2020. doi: 10.3103/S0025654420070213

V. Ph. Zhuravlev, “Van der Pol Oscillator. Technical
Applications” Mechanics of Solids, vol. 55, no. 1, pp. 132-137,
2020. doi: 10.3103/S0025654420010203

V. Zhuravlev, S. Perelyaev, and D. Borodulin, "The Generalized
Foucault Pendulum is a 3D Integrating Gyroscopes Using the
Three-Dimensional Precession of Standing Waves in a Rotating
Spherically Symmetric Elastic Solid" in 2019 DGON Inertial
Sensors and Systems (ISS), Braunschweig, Germany, 2019, pp.
1-12. doi: 10.1109/1SS46986.2019.8943687

Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding
Mode Control and Observation. New York: Springer, 2014.

H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River,
NIJ: Prentice Hall, 2002.

R. I. Mingazov, F. 1. Spiridonov, I. A. Vikhlyaev, and K. V.
Shishakov, “Comparison of Methods for Determining the
Physical Parameters of the Resonator of a Solid-State Wave
Gyroscope” in Proceedings of the VI International Forum
"Instrumentation Engineering, Electronics and
Telecommunications - 2020", Izhevsk, Russian Federation,
2020, pp. 6-11. doi: 10.22213/2658-3658-2020-6-11

Volume 26, Issue 04, April 2026


http://doi.org/10.1134/s2075108723010054
http://doi.org/10.23919/ICINS.2019.8769344
http://doi.org/10.23919/ICINS51784.2022.9815352
http://doi.org/10.23919/ICINS.2017.7995651
http://doi.org/10.1016/j.sna.2011.04.039
http://doi.org/10.4028/www.scientific.net/AMM.110-116.715
http://doi.org/10.1007/s00419-013-0791-0
http://doi.org/10.3103/S002565441808022
http://doi.org/10.20537/nd250211
http://doi.org/10.1134/S207510872570004
http://doi.org/10.1134/S207510872570004
http://doi.org/10.1109/ACCESS.2024.3511234
http://doi.org/10.1007/s00542-023-05512-9
http://doi.org/10.1007/s00542-023-05512-9
http://doi.org/10.1109/CCDC58219.2024.10619876
http://doi.org/10.1109/CCDC58219.2024.10619876
http://doi.org/10.3103/S0025654420070213
http://doi.org/10.3103/S0025654420010203
http://doi.org/10.1109/ISS46986.2019.8943687
http://doi.org/10.22213/2658-3658-2020-6-11

