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1- Introduction 

Inertial navigation is a fundamental technology for accurate and 

autonomous positioning. The successful operation of modern systems 

relies on the use of advanced navigation systems, which in turn depend 

on high-precision strapdown inertial navigation systems (SINS). It 

operates by using internal accelerometers and gyroscopes to 

continuously calculate a vehicle’s position, velocity, and orientation. 

A gyroscope is a sensor that measures angular velocity. While various 

gyroscope technologies like dynamically-tuned gyros (DTG), ring 

laser gyros (RLG), and fiber optic gyros (FOG) are used, the Solid-

State Wave Gyroscope (SSWG) stands out as a promising technology 

for future development [1,2,3]. 

The fundamental element of a SSWG is a high-quality piezoelectric 

or magneto-strictive solid-state waveguide, engineered to support the 

propagation of standing acoustic or spin waves. Unlike traditional 

gyroscopes with mechanical rotors, the SSWG utilizes elastic 

vibrations within its solid medium, where the waveguide is outfitted 

with transducers that monitor and control the wave vibrations. The 

operating principle relies on the inertia effect of these standing wave 

vibrations, detecting changes induced by rotation through the Coriolis 

effect on the wave patterns. This operational principle offers the 

advantage of engaging in elastic deformations without physical wear 

and tear, eliminating moving parts, subsequently increasing 

robustness, reliability and extending the device's operational life 

[4,5,6]. Research [7] demonstrates how the inherent geometrical 

nonlinearity of the resonator can be leveraged to naturally stabilize the 

gyroscope, combining the benefits of both positional resonant 

excitation and parametric resonance . 
The behavior of these resonators is often studied using the Van der 

Pol oscillator as a mathematical model [8]. The evolution to two-

dimensional (2D) and three-dimensional (3D) Van der Pol oscillator 

models has allowed for a more comprehensive understanding and 

control of the gyroscope’s dynamics. Research by Zhuravlev [9] 

further explores this by constructing and proving the stability of a 

control system for an isotropic oscillator, ensuring that an elliptical 

trajectory with a non-zero quadrature is maintained. Achieving the 

high precision necessary for navigation-grade sensors requires 

effective control strategies. Recent advancements have focused on 

enhancing these strategies through improved mathematical modeling 

and robust control techniques. For instance, new regularization 

methods and scale factor analyses have been proposed to refine SSWG 

dynamics [10,11]. Furthermore, advanced approaches such as 

adaptive recursive terminal sliding mode control and disturbance 

observers have been developed to handle model uncertainties and 

improve tracking precision [12,13,14]. The goal of such control is to 

ensure the oscillator reaches a stable operational mode as quickly as 

possible. Research [15] has shown that feedback control based on the 

total energy of the oscillations is more effective than traditional 

amplitude-based feedback. A 2D oscillator, describes an elliptical 

trajectory in a plane.  An extended 2D Van der Pol oscillator model 

with external control is now effectively used to study and enhance the 

performance of the new generation of SSWGs [16]. This concept has 

been extended to three dimensions [17], which propose a 3D 

integrating gyroscope based on the precession of standing waves in a 

spherically symmetric solid, likening it to a generalized Foucault 

pendulum . 
In this paper, the feedback control scheme for a 2D van der pol 

oscillator proposed by Zhuravlev [16] is controlled using sliding mode 

control (SMC) algorithms subject to disturbance and operational 

limitations. First, the feedback control parameters are derived from 

the evolution of the dynamics of the extended 2D Van Der Pol 

oscillator, then, the control logic for two, dual input sliding mode 

variants is derived, integral SMC (I-SMC) and terminal super twisting 

SMC (T-ST-SMC) [18]. As subject to real-world applications, where 

only the deformations of the oscillator are observed, a high gain  

 

Fig. 1 2D van der pol oscillator. 

 

observer [19], upholding the separation principle, is put to use from 

the dynamics of the system and is incorporated within the control 

logic. At last, the design is put to test in simulation with the following 

constraints: the dynamics are updated every 0.001s, observation and 

control are carried out every 0.01s, saturation on the control inputs and 

an aggressive disturbance for a period to test robustness. 

2- Methodology 

2-1- Deriving the basis of infinitesimal evolutions 

The methodology presented here is from the works of Zhuravlev 

[8,9,15,16]. First, Consider the extended 2D Van Der Pol oscillator 

[16] with the form: 

𝑞̈1 + 𝑞1 = 𝜇(1 − 𝑞1
2 − 𝑞2

2 − 𝑞̇1
2 − 𝑞̇2

2)𝑞̇1 

𝑞̈2 + 𝑞2 = 𝜇(1 − 𝑞1
2 − 𝑞2

2 − 𝑞̇1
2 − 𝑞̇2

2)𝑞̇2 
(1) 

With Energy and quadrature being: 

𝐸 =
1

2
(𝑞1

2 + 𝑞2
2 + 𝑞̇1

2 + 𝑞̇2
2) 

𝐾 = 𝑞1𝑞̇2 − 𝑞2𝑞̇1 

(2) 

Proceed by writing the dynamics in the form: 

𝑞̈1 + 𝑞1 = 𝑄1(𝑞1, 𝑞2, 𝑞̇1, 𝑞̇2) 

𝑞̈2 + 𝑞2 = 𝑄2(𝑞1, 𝑞2, 𝑞̇1, 𝑞̇2) 
(3) 

In free mode (𝑄1 = 0,𝑄2 = 0), the oscillator describes an elliptical 

trajectory in the (𝑞1, 𝑞2) plane with arbitrary principal semi-axes and 

arbitrary inclination of the major semi-axis relative to the 𝑞1- axis 

which is depicted in Figure 1, regarding the electrode configuration in 

0° − 45° placements. 

Forces on the right-hand side of the (3) are interpreted as follows: 

Perturbing forces: Deform the elliptical trajectory of free mode 

(changing semi-axis lengths, ellipse orientation, or disrupting its 

shape). 

Control forces: Stabilize a given elliptical trajectory in a specific 

sense. 

The general solution of (3) in free mode defines the parametric 

equations of the elliptical trajectory: 

𝑞1 = 𝑥1 cos 𝑡 + 𝑥3 sin 𝑡 

𝑞2 = 𝑥2 cos 𝑡 + 𝑥4 sin 𝑡 
(4) 

The arbitrary constants (𝑥1, 𝑥2, 𝑥3, 𝑥4) in (4) are treated as slow 

varying phase variables when 𝑄1, 𝑄2 ≠ 0 and are small compared to 

the restoring force. Thus, the oscillation energy, angular momentum 

and ellipse area are: 

𝐸 =
1

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2) =

1

2
𝑥2 (5) 

𝐾 = 𝑥1𝑥4 − 𝑥2𝑥3 (6) 

𝜋𝑟𝑘 =
1

2
∫ (𝑞1𝑞̇2 − 𝑞2𝑞̇1

2𝜋

0

)𝑑𝑡 = 𝜋𝐾 (7) 

where r is the major semi-axis and k is the minor semi-axis. 

Sensor  
1q

2q

 

Sensor
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To correctly formulate feedbacks, controlling energy, quadrature, 

precession, or oscillation frequency, a basis for infinitesimal 

evolutions of the elliptical trajectory must be constructed. 

A type of phase variables, known in celestial mechanics as orbital 

elements are proposed as (𝑞1, 𝑞2, 𝑞̇1, 𝑞̇2) → (𝑟, 𝑘, 𝜃, 𝜏): 

𝑞1 = 𝑟 cos(𝑡 + 𝜏) cos𝜃 − 𝑘 sin(𝑡 + 𝜏) sin 𝜃 

𝑞2 = 𝑟 cos(𝑡 + 𝜏) sin 𝜃 + 𝑘 sin(𝑡 + 𝜏) cos 𝜃 
(8) 

Where r is the Major semi-axis of the ellipse, k is the Minor semi-axis, 

θ is the Inclination angle of the major semi-axis to the 𝑞1-axis and τ is 

the Initial position (at 𝑡 = 0 ) of point (𝑞1, 𝑞2)  on the elliptical 

trajectory. 

Rearranging, the slow variables are written as: 

𝑥1 = 𝑟 cos𝜏 cos𝜃 − 𝑘 sin 𝜏 sin 𝜃 

𝑥2 = 𝑟 cos 𝜏 sin𝜃 + 𝑘 sin 𝜏 cos𝜃 

𝑥3 = −𝑟 sin 𝜏 cos𝜃 − 𝑘 cos𝜏 sin𝜃 

𝑥4 = −𝑟 sin 𝜏 sin𝜃 + 𝑘 cos𝜏 cos𝜃 

(9) 

Identification of the resonator parameters were carried out in a study 

[20], though not investigated as it is not in the scope of this paper. 

If (𝑄1, 𝑄2) = 0 , each ellipse in configuration space 𝑞 = (𝑞1, 𝑞2) 

corresponds to a constant 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) in phase space. 

If 𝑄 ≠ 0, the point 𝑥(𝑡) moves in phase space. In the configuration 

space 𝑞 = (𝑞1, 𝑞2) , this corresponds to evolution of the initial 

trajectory—ellipse or line segment. Analysis is carried out for a linear 

trajectory since in applications this is often required. Stabilizing 

elliptical trajectories with non-zero quadrature is essential for 

pendulum-type inertial navigation systems [8]. 

Four elementary evolutions exist: 

• Form precession: Rotation of a line segment in the q-

plane such that a rotating coordinate system exists where 

the segment is stationary. 

• Amplitude variation: Change in segment length. 

• Frequency variation: Change in oscillation frequency 

along a fixed segment. 

• Form disruption: Evolution irreducible to the preceding 

evolutions. 

Each evolution type corresponds to specific directions of x(t) in phase 

space. Precession direction is formulated by Appling rotation 𝑥 → 𝑦 

(angle 𝛼): 

(
cos 𝛼 sin 𝛼

− sin 𝛼 cos𝛼
) (

𝑥1 cos 𝑡 + 𝑥3 sin 𝑡

𝑥2 cos 𝑡 + 𝑥4 sin 𝑡
) = (

𝑦1 cos 𝑡 + 𝑦3 sin 𝑡

𝑦2 cos 𝑡 + 𝑦4 sin 𝑡
) (10) 

𝑒1 =
𝑑𝑦

𝑑𝛼
|𝛼=0 = {𝑥2, −𝑥1 , 𝑥4, −𝑥3}. (11) 

𝑒2 =
𝑑𝑦

𝑑𝜇
|𝜇=0 = {𝑥1, 𝑥2 , 𝑥3, 𝑥4}. (12) 

𝑒3 =
𝑑𝐾

𝑑𝑥
|𝜏=0 = {𝑥4, −𝑥3 ,−𝑥2, 𝑥1}. (13) 

𝑒4 =
𝑑𝑦

𝑑𝜏
|𝜏=0 = {𝑥3, 𝑥4 , −𝑥1, −𝑥2}. (14) 

Where (11-14) by order are precession, amplitude variation, Form 

disruption (quadrature), and Frequency change. 

2-2- Deriving the Control scheme 

Taking the derivative of (𝑥1, 𝑥2, 𝑥3, 𝑥4), the explicit time-dependent 

resulting equation is averaged over time, yielding the general linear 

forces as: 

(
𝑄1

𝑄2

) = (𝐶 + 𝑁 + 𝐻)(
𝑞1

𝑞2

) + (𝐷 + Γ + 𝐺) (
𝑞̇1

𝑞̇2

) (15) 

Table 1 Corresponding Forces 
Frequency(𝒆𝟒) Quadrature(𝒆𝟑) Amplitude(𝒆𝟐) Precession(𝒆𝟏) force 

−𝒄/𝟐 0 0 0 C 

0 −𝑛/2 0 0 N 

0 0 𝑑/2 0 D 

0 0 0 𝛾/2 Γ 

 

Where the matrices correspond to forces in the form of: 

• C=𝑐𝐸 Spherical potential. 

• 𝑁 = 𝑛 (
0 1

−1 0
) Circular. 

• 𝐻 = ℎ (
cos2𝛼 sin 2𝛼
sin2𝛼 −cos2𝛼

) Hyperbolic potential. 

• D=𝑑𝐸 Spherical dissipative. 

• Γ = 𝛾 (
0 1

−1 0
) Gyroscopic. 

• 𝐺 = 𝑔 (
cos2𝛽 sin 2𝛽
sin 2𝛽 −cos2𝛽

) Hyperbolic dissipative. 

H and G are unused in control. Mapping forces to 𝑋(𝑥): 

𝐶: −
𝑐

2
𝑒4, 𝑁: −

𝑛

2
𝑒3, 𝐷:

𝑑

2
𝑒2, Γ =

𝛾

2
𝑒1   (16) 

Thus, as proposed by Zhuravlev [8], the control forces will be: 

‖
𝑄1

𝑄2
‖ = 𝑑 ‖

1 0
0 1

‖‖
𝑞̇1

𝑞̇2
‖ (17) 

‖
𝑄1

𝑄2
‖ = 𝑐 ‖

1 0
0 1

‖‖
𝑞1

𝑞2
‖ (18) 

‖
𝑄1

𝑄2
‖ = 𝛾 ‖

0 1
−1 0

‖‖
𝑞̇1

𝑞̇2
‖ (19) 

‖
𝑄1

𝑄2
‖ = 𝑛 ‖

0 1
−1 0

‖‖
𝑞1

𝑞2
‖ (20) 

Where by order, the forces are total vibration energy stabilization 

(amplitude), frequency control, precession control and quadrature 

stabilization. the parameters n & d are: 

𝑛 = 𝜇2

𝐾

𝐸
   𝑑 = 𝜇3(1 − 2𝐸) (21) 

Thus, taking the feedback Control forces into account and 

incorporating them to the dynamics (1): 

𝑞̈1 + 𝑞1 = 𝜇3́ (
1

2
− 𝐸) 𝑞̇1 − 𝜇2

𝐾

𝐸
𝑞2 − 𝛾𝑞̇2 + 𝑐𝑞1 

𝑞̈2 + 𝑞2 = 𝜇3́ (
1

2
− 𝐸) 𝑞̇2 + 𝜇2

𝐾

𝐸
𝑞1 + 𝛾𝑞̇1 + 𝑐𝑞2 

(22) 

Where 𝜇3́ =
𝜇−𝜇3 

2
 is interpreted as a constant energy feedback 

subtraction parameter corresponding to an amplitude control scheme 

which is not investigated here. A study was carried out [5] suggesting 

that the precession angle 𝜃 grows linearly with 𝛾 which is an obvious 

claim regarding the provenance of the physical phenomena. If it is 

necessary to provide a given precession of the oscillation form with 

an angular velocity ω, then  𝛾 = 𝜇4(𝜔 − 𝜃̇). 

3- Basis of Control using sliding mode 

The motive for controlling this scheme provided by Zhuravlev [16] is 

that the 𝛾 parameter introduces an imbedded external disturbance into 

our dynamic, namely, the induced angular velocity which it’s sensing 

is the purpose of the SSWG. 

We seek to have the 2D oscillator track the solution to 𝑞̈ + 𝑞 = 0 for 

given initial conditions regarding a tolerable bound for quadrature, 

with robustness to an unknown parameter 𝛾  within a predefined 

bound, which is a nonlinear tracking control problem of preserving a 

desired amplitude and frequency. 

In this study, suitable variants of SMC are implemented and tuned in 

accordance to the problem definition. For emulating the reality of the 

problem, the model dynamic is updated every 0.001s and the control 

input and observation are carried out every 0.01s, and for robustness 

evaluation, from 10s to 10.5s, 25s to 25.5s, 40s to 40.5s,  the 

disturbance takes aggressive values which were not expected for in 
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the control scheme, and a saturation bound constrains the final control 

output. 

Among the feedback forces which form (22),  𝜇3́ could be interpreted 

as a constant value, resultant of feedbacking the Energy model of the 

system back into the extended 2D van der pol equations. 𝛾 is the direct 

result of external rotation of the system and interpreted as disturbance, 

as the goal is to keep the oscillator tracking a stationary predefined 

trajectory. The other two feedback forms left, namely c and 𝜇2 are 

taken as the control input due to both being explicit external feedbacks 

and having a relatively workable structure, all the while perceiving 𝜇2 

as a robustness parameter and an embedded quadrature regulation 

factor, as the structure of this feedback dynamic is sensitive to 

aggressive quadrature values. 

3-1- Sliding mode control derivation for the given dynamics 

The system is quadratic (two inputs and two dynamic blocks); thus, 

the equations are derived as follows: 

𝑞̈1 = 𝑓1(𝑋) + ∑𝑔1𝑗(𝑋)𝑢𝑗

2

𝑗=1

 

𝑞̈2 = 𝑓2(𝑋) + ∑𝑔2𝑗(𝑋)𝑢𝑗

2

𝑗=1

 

(23) 

𝑞̅(2) = 𝑓(𝑋) + 𝐺𝑢 (24) 

Where: 

𝑓 = [
𝑓1(𝑋)

𝑓2(𝑋)
] = [

𝜇3́ (
1

2
− 𝐸) 𝑞̇1 − 𝛾𝑞̇2 − 𝑞1

𝜇3́ (
1

2
− 𝐸) 𝑞̇2 + 𝛾𝑞̇1 − 𝑞2

] (25) 

𝑓̂ = [
𝜇3́ (

1

2
− 𝐸) 𝑞̇1 − 𝑞1

𝜇3́ (
1

2
− 𝐸) 𝑞̇2 − 𝑞2

] (26) 

𝐹 = |𝑓 − 𝑓̂| = 𝛾𝑚𝑎𝑥  [
|𝑞̇2|

|𝑞̇1|
] (27) 

𝐺 = [
𝑔11 𝑔12

𝑔21 𝑔22
] = [

𝑞1 −
𝐾

𝐸
𝑞2

𝑞2

𝐾

𝐸
𝑞1

]      𝑢 = [
𝑐
𝜇2

] (28) 

With Integral and Terminal sliding surfaces by order: 

𝑥̃1,2 = 𝑞1,2 − 𝑞𝑑𝑒𝑠𝑖𝑟𝑒𝑑1,2
 (29) 

𝑠𝑖 = (
𝑑

𝑑𝑡
+ 𝜆𝑖)

2

∫ 𝑥𝑖̃

𝑡

0

𝑑𝑡 → 𝑠1,2

= 𝑥̇̃1,2 + +2𝜆1,2𝑥̃1,2

+ 𝜆1,2
2 ∫ 𝑥𝑖̃

𝑡

0

𝑑𝑡 − 𝑥̇̃1,2(0)

− 2𝜆1,2𝑥̃1,2(0) 

(30) 

𝑠1,2 = 𝑥̇̃1,2 + 𝛽𝑥̃1,2

𝑝
𝑞

= 𝑥̇̃1,2 + 𝛽𝑠𝑖𝑔𝑛(𝑥̃1,2)|𝑥̃1,2|
𝑝
𝑞 (31) 

The Lyapunov candidate function is introduced as: 

𝑉 =
1

2
𝑠2 →

𝑑

𝑑𝑡
(𝑉) = 𝑠𝑠̇ ≤ −𝜂|𝑠| (32) 

Where with trivial derivation, the control logics are as: 

• Integrator with a continuous switching law: 

𝑢 = 𝐺−1 (−𝑓̂ + 𝑞̈𝑑𝑒𝑠𝑖𝑟𝑒𝑑1,2
− 2𝜆1,2𝑥̇̃1,2 − 𝑢𝑠𝑤𝑖𝑡𝑐ℎ−𝐼

− 𝜆1,2
2 (𝑥̃1,2 − 𝑥̃1,2(0)))  

𝑢𝑠𝑤𝑖𝑡𝑐ℎ−𝐼 = [
𝐾1𝑠𝑎𝑡(𝑠1/𝜙)
𝐾2𝑠𝑎𝑡(𝑠2/𝜙)

] 

𝐾1,2 ≥ 𝐹 + 𝜂1,2 

(33) 

• Terminal Super Twisting with a small parameter 𝜖́ = 0.01 

to prevent singularity: 

𝑢 = 𝐺−1 (−𝑓̂ + 𝑞̈𝑑𝑒𝑠𝑖𝑟𝑒𝑑1,2
−

𝛽𝑝

𝑞
𝑥̇̃1,2(|𝑥̃1,2|

𝑝
𝑞
−1

+ 𝜖́)

− 𝑢𝑠𝑤𝑖𝑡𝑐ℎ−𝑇)  

𝑢𝑠𝑤𝑖𝑡𝑐ℎ−𝑆𝑇 =

[
 
 
 
 𝑘1√𝑠1𝑠𝑎𝑡(𝑠1/𝜙) + 𝑘2 ∫ 𝑠𝑖𝑔𝑛(𝑠1)𝑑𝜏

𝜏

0

𝑘1√𝑠2𝑠𝑎𝑡(𝑠2/𝜙) + 𝑘2 ∫ 𝑠𝑖𝑔𝑛(𝑠2)𝑑𝜏
𝜏

0 ]
 
 
 
 

 

(34) 

3-2- HGO for attaining the dimensionless velocities 

In real applications, online values of 𝑞1& 𝑞2  are observed, but the 

values of 𝑞̇1 & 𝑞̇2 which are explicitly utilized in the control schemes 

(33) & (34) are not directly accessible. For the purpose of attaining 

these two states and with respect to the scheme of the dynamic model 

(22), a high gain observer (HGO) [19] is proposed. The advantage of 

using this observer is that it holds the principle of separation of 

estimation and control. This validity arises from the singular 

perturbation nature of High-Gain Observers; for sufficiently high 

gains, the observer error dynamics become fast enough to be time-

scale separated from the slower system kinetics, effectively 

recovering the performance of the state feedback controller [19], 

leaving the proposed controlled scheme (22) unhinged in terms of 

stability analysis by the additional nonlinear observer. 

The HGO is proceeded by: 

𝑍 = [

𝑧1

𝑧2

𝑧3

𝑧4

] = [

𝑞1

𝑞2

𝑞̇1

𝑞̇2

] (35) 

𝑧̇3 + 𝑧1 = 𝑈1(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝜇3́, 𝜇2, 𝛾, 𝑐) 

𝑧̇4 + 𝑧2 = 𝑈2(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝜇3́, 𝜇2, 𝛾, 𝑐) 
(36) 

With the observations as: 

𝑦 = [
𝑧1

𝑧2
] (37) 

𝑍̇ = [

𝑧3

𝑧4

𝑈1 − 𝑧1

𝑈2 − 𝑧2

] = 𝑓(𝑍, 𝑈) (38) 

𝑍̇̂ = 𝑓(𝑍̂,𝑈) + 𝐻(𝑦 − 𝑦̂) (39) 

𝐻 =

[
 
 
 
 
 
 
 
𝛼1

𝜖
0

0
𝛼1

𝜖
𝛼2

𝜖2
0

0
𝛼2

𝜖2]
 
 
 
 
 
 
 

 (40) 

Where 0 < 𝜖 < 1 is the tuning parameter and the 𝛼1, 𝛼2 coefficients 

are chosen so that 𝑠2 + 𝛼2𝑠 + 𝛼1 = 0 is Hurwitz. 

The observer dynamics will be: 

𝑧̇̂1 = 𝑧̂3 +
𝛼1

𝜖
(𝑦1 − 𝑧̂1) 

𝑧̇̂2 = 𝑧̂4 +
𝛼1

𝜖
(𝑦2 − 𝑧̂2) 

𝑧̇̂3 = −𝑧̂1 + 𝑈1(𝑍̂, 𝜇3́, 𝜇2, 𝑐) +
𝛼2

𝜖2
(𝑦1 − 𝑧̂1) 

𝑧̇̂4 = −𝑧̂2 + 𝑈2(𝑍̂, 𝜇3́, 𝜇2, 𝑐) +
𝛼2

𝜖2
(𝑦2 − 𝑧̂2) 

(41) 

And the estimation error as: 

𝑒̇ =

[
 
 
 
 
 
 
 𝑒3 −

𝛼1

𝜖
𝑒1

𝑒4 −
𝛼1

𝜖
𝑒2

𝛿1 −
𝛼2

𝜖2
𝑒1

𝛿2 −
𝛼2

𝜖2
𝑒2]

 
 
 
 
 
 
 

 (42) 

∆= [
𝛿1

𝛿2
] = [

𝑈1(𝑍, 𝜇3́, 𝜇2, 𝛾, 𝑐) − 𝑈1(𝑍̂, 𝜇3́, 𝜇2, 𝑐)

𝑈2(𝑍, 𝜇3́, 𝜇2, 𝛾, 𝑐) − 𝑈2(𝑍̂, 𝜇3́, 𝜇2, 𝑐)
] (43) 
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4- Simulation results 

The parameters of energy feedback 𝜇3́ =
1

2
, HGO 𝛼1 = 1, 𝛼2 = 2, 

𝜖 = 0.05, controller saturation limit as 25, 𝜙 = 0.5  and the 

disturbance 𝛾 which is: 

𝛾 = {

0
150 sin(100𝑡)

2 sin(100𝑡)
 

𝑡 < 5𝑠
10𝑠, 25𝑠, 40𝑠, ℎ𝑎𝑙𝑓 𝑎 𝑠𝑒𝑐𝑜𝑛𝑑

𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑡

 (44) 

are all held constant across both simulations. This specific signal 

volatility in the disturbance is what the system showed the most 

sensitivity to, thus implemented to conduct the disturbance rejection 

study. The predefined disturbance bound 𝛾𝑚𝑎𝑥 = 3 is introduced for 

the I-SMC. The controller and observer activation time is every 0.01s, 

and the dynamic’s update time is every 0.001s. 

A quantitative measure for relative performance is introduced as: 

𝑃 =
∑ ‖𝜁‖1

𝐼−𝑆𝑀𝐶 − ‖𝜁‖1
𝑇−𝑆𝑇−𝑆𝑀𝐶𝑇

𝑡=0

∑ ‖𝜁‖1
𝐼−𝑆𝑀𝐶𝑇

𝑡=0

 (45) 

Where 𝜁 = 𝑒(𝑡); Δ𝑢(𝑡) . Tracking accuracy is evaluated using the 

accumulated error norm, while chattering intensity is assessed by 

summing the magnitude of changes in the control effort between 

consecutive steps. The primary objectives are to achieve robust 

reference tracking despite external disturbances and to rely solely on 

observable system states by using an HGO. 

Figure 2 illustrates the performance of the I-SMC. The reference 

tracking error, shown in Figure 2(a), demonstrates that the controller 

effectively forces the system states to follow the desired trajectory up 

to some extent of an oscillating error. However, noticeable deviations 

in tracking error occur during the aggressive disturbance periods (10-

10.5s, 25-25.5s, and 40-40.5s) which is also present for the T-ST-

SMC case. The control inputs, depicted in Figure 2(b), exhibit 

significant chattering. This high-frequency switching is a known 

characteristic of first-order sliding mode control. The control effort 

also reaches the saturation limit of 25 during the disturbance intervals, 

indicating the controller is working at its maximum capacity to 

counteract these events. The sliding surfaces for the I-SMC, seen in 

Figure 4(a), show that the system trajectories are driven to and 

maintained on the sliding manifold, although with some oscillation, 

particularly when large disturbances are introduced. A key deficiency 

of I-SMC here is pre defining the disturbance bound 𝛾, which is not 

present for the T-ST-SMC. 

The T-ST-SMC's performance, detailed in Figure 3, presents a more 

refined control action. The reference tracking errors in Figure 3(a) are 

visibly smaller than those of the I-SMC. This suggests a higher degree 

of robustness. A significant advantage of the T-ST-SMC is the 

reduction in chattering, as seen in the control effort plot in Figure 3(b). 

The super-twisting algorithm, a second-order sliding mode technique, 

smooths the control signal by integrating the discontinuous term, 

leading to a continuous control action that is more practical for 

implementation. While the control inputs are still highly active, the 

high-frequency oscillations are less pronounced compared to the I-

SMC. 

As was the incentive of the study to delineate robustness of the said 

control logics to large external disturbances, both SMCs depicted 

close, acceptable behavior. In further investigation of SMC variant’s 

result discrepancies, it is observed that the T-ST-SMC yielded a 

46.5% improvement in tracking accuracy and a 39% reduction in 

control signal chattering relative to the I-SMC. 

Figure 3(c) highlights the controller's ability to manage the quadrature 

evolution, keeping it close to the reference value even in the presence 

of disturbances. This is crucial for the proper function of the  

 

 

 

Table 2 Simulation control parameters 

𝝀𝟏,𝟐, 𝜼𝟏,𝟐 𝒌𝟏, 𝒌𝟐 𝜷 𝒑 − 𝒒 SMC/ Params 

3.5-10 - - - ISMC 

- 9-2 12.5 6-5 T-ST-SMC 

 

gyroscope model. The observer performance error which is consistent 

for both cases, shown in Figure 3(d), remains bounded and relatively 

small, validating the effectiveness of the High-Gain Observer in 

estimating the unmeasurable states. The sliding surfaces for the T-ST-

SMC in Figure 4(b) appear smoother than those for the I-SMC, 

indicating a more stable and less agitated response on the sliding 

manifold. The terminal sliding mode aspect of this controller is 

designed to ensure faster, finite-time convergence of the tracking 

error. 

5- Conclusion 

This study successfully demonstrated the robust control of a 2D Van 

der Pol oscillator model for a SSWG. The control objective was to 

ensure precise trajectory tracking subject to a bounded, defined, 

nonzero quadrature in the presence of significant external 

disturbances and with reliance on estimated velocities. 

As it is apparent with respect to the figures and the quantitative 

evaluation in the discussion, both I-SMC and T-ST-SMC achieved 

tracking with robustness to large disturbances. Although both logics 

had marginally similar behavior in response to the large disturbances, 

the T-ST-SMC demonstrated a better performance in terms of overall 

tracking precision and control input smoothness. The first-order I-

SMC exhibited sharp, high-frequency input variations, known as 

chattering, and struggled to completely suppress its sliding surfaces. 

In contrast, the second-order T-ST-SMC effectively mitigated these 

issues, providing a smooth and continuous control signal while 

demonstrating superior error handling and convergence on the sliding 

surfaces. Quantitatively, this proposed strategy yielded a 46.5% 

improvement in tracking accuracy and a 39% reduction in control 

signal chattering relative to the I-SMC. A core advantage of the 

terminal super twisting variant over the I-SMC is the elimination of 

the need to predefine a disturbance bound 𝛾𝑚𝑎𝑥  during the 

implementation of the control logic. Despite this, the T-ST-SMC 

showcased comparatively superb performance, indicating a higher 

degree of robustness in implementation. 

In conclusion, this work demonstrates that second-order SMC, and 

particularly the Terminal Super-Twisting variant, offers a superior 

solution for the robust control of SSWGs subject to large disturbances. 

It successfully addresses the dual challenges of aggressive external 

disturbance rejection and chattering elimination while operating with 

estimated states. The claim is that in accordance to the proposed 

feedbacks, if a defined nonzero quadrature; as zero quadrature renders 

this papers control scheme deficient as only one input remains subject 

to the assumptions made; is tolerated for a period before switching to 

conventional solutions for quadrature mitigation in literature, this 

closed loop system rejects disturbances with precision, obliged to the 

contribution of the feedback with the form 𝜇2
𝐾

𝐸
𝑞𝑛. 

Future work could involve applying perturbation analysis methods to 

further investigate the analytical properties of the feedback forms. 

Additionally, the extension of the control framework to three-

dimensional models and the integration of adaptive observation 

schemes may be considered. 
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(b) (a) 

Fig.2 I-SMC - (a) reference tracking error (b) control inputs 

 

 

  

(b) (a) 

 
 

(d) (c) 

Fig.3 T-ST-SMC - (a) reference tracking errors (b) control effort (c) quadrature evolution (d) observer performance error. 
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(b) (a) 

Fig.4 Sliding surfaces – (a) I-SMC (b) T-ST-SMC. 
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