مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی-تطبیقی کاهش بازگشت فنری در خم‌کاری ورق‌های فلزی: ارتعاش کم فرکانس در مقابل تأثیر ارتعاش فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران
10.48311/mme.2026.118311.82911
چکیده
پدیده بازگشت فنری به عنوان یک چالش اصلی در فرآیند خم‌کاری ورق‌های فلزی، دقت ابعادی قطعه کار را تحت تأثیر قرار می‌دهد. در این پژوهش، به منظور مقایسه سامانمند کارایی دو تکنیک نوین کاهش بازگشت فنری، فرآیند خمش ورق تحت تأثیر ارتعاشات کم فرکانس و فراصوت به کمک روش اجزای محدود شبیه‌سازی شد. مدل حاضر برای سه آلیاژCK65، AA6061  و AA3105 توسعه و با داده‌های تجربی اعتبارسنجی گردید. نتایج نشان داد که هر دو تکنیک در مقایسه با حالت پایه بدون ارتعاش، بازگشت فنری را کاهش می‌دهند، به‌طوری‌که ارتعاش کم فرکانس به تنهایی منجر به کاهش کمّی قابل‌توجه ۱۵ تا ۳۵ درصدی در این پدیده شد. با این حال، ارتعاش فراصوت با مکانیسم نرم‌شدگی آکوستیکی، عملکردی برتر داشته و میزان کاهش بازگشت فنری را به طور میانگین بین ۵۴ تا ۱۱۷ درصد بیش از روش روش کم فرکانس نشان داد. این برتری در تمامی مواد و بازه‌های زمانی مختلف پایدار بود و با افزایش استحکام تسلیم ماده، شکاف کارایی بین دو روش بیشتر شد. این مطالعه معیارهای کمی برای انتخاب بهینه‌ترین تکنیک ارتعاشی بر اساس نوع ماده، دقت موردنیاز و سطح کارایی مطلوب فراهم می‌آورد.
.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

A Numerical-Comparative Study on Springback Reduction in Sheet Metal Bending: Low-Frequency vs. Ultrasonic Vibration Assistance

نویسندگان English

Mahdi Jafari Vardanjani
Yaghoub Dadgar Asl
Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده English

The springback phenomenon poses a significant challenge in the sheet metal bending process, adversely affecting the dimensional accuracy of the workpiece. This study presents a systematic comparison of the effectiveness of two modern techniques for springback reduction: low-frequency and ultrasonic vibration assistance, using the finite element method. The model was developed and validated against experimental data for three alloys: CK65, AA6061, and AA3105. The results demonstrated that both techniques effectively reduce springback compared to the conventional non-vibration base case. Quantitatively, low-frequency vibration alone achieved a significant 15% to 35% reduction in springback. However, ultrasonic vibration assistance, leveraging the acoustic softening mechanism, consistently outperformed low-frequency vibration, enhancing the springback reduction by an average of 54% to 117% compared to the low-frequency method. The performance gap between the two techniques widened for materials with higher yield strength. This research provides quantitative criteria for selecting the optimal vibration-assisted technique based on material type, required precision, and desired efficacy level

کلیدواژه‌ها English

Springback, Sheet Metal Bending, Ultrasonic Vibration, Low-Frequency Vibration, Finite Element Simulation
[1]           W. Feng, C. Zhang, Y. Chen, Z. Liu, L. Huang, and X. Han, "Vibration-assisted electromagnetic forming with alternating electromagnetic force for V-bending," Journal of Manufacturing Processes, vol. 125, pp. 155-163, 2024/09/15/ 2024, doi: DOI:10.1016/j.jmapro.2024.07.055.
[2]           K. C. Gan et al., "Elastic moduli of Douglas-fir obtained by compression, bending and damped vibration," Results in Materials, vol. 28, p. 100793, 2025/12/01/ 2025, doi: DOI:10.1016/j.rinma.2025.100793.
[3]           A. Gorji, s. montazeri, and M. Bakhshi, "A new method for compression bending of thin-walled tube in hydroforming," (in en), Modares Mechanical Engineering, vol. 14, no. 12, pp. 190-198, 2015. [Online]. Available: https://mme.modares.ac.ir/article_8254.html.
[4]           Q. H. Pham and T. Cuong-Le, "A novel Chebyshev Finite Element apporach for bending and free vibration analysis of tridirectional functionally graded porous nanoshell," Computers & Mathematics with Applications, vol. 198, pp. 350-376, 2025/11/15/ 2025, doi: DOI:10.1016/j.camwa.2025.10.002.
[5]           Y.-H. Ri, U.-R. Rim, and J.-S. Mun, "A study for the bending vibration analysis of the intermittently welded stiffened plate," Marine Structures, vol. 98, p. 103674, 2024/11/01/ 2024, DOI:10.1016/j.marstruc.2024.103674.
[6]           F. Huang, C. Chen, Z. Wang, T. Wang, and M. Yang, "Influence of motor rotor bending on vibration characteristics of electric drive system," Mechanical Systems and Signal Processing, vol. 236, p. 113009, 2025/08/01/ 2025, DOI:10.1016/j.ymssp.2025.113009.
[7]           J. Sun, J. Deng, S. Zhang, J. Guan, J. Li, and Y. Liu, "Angled contact surface optimization and experimental verification of traveling wave ultrasonic motor with axial-bending coupled vibration," Ultrasonics, vol. 158, p. 107822, 2026/02/01/ 2026, DOI:10.1016/j.ultras.2025.107822.
[8]           M. Keymanesh et al., "A bending vibration-assisted ultrasonic surface rolling method for load-bearing holes," Tribology International, vol. 214, p. 111290, 2026/02/01/ 2026,: DOI: 10.1016/j.triboint.2025.111290.
[9]           R. Nasaeri, M. Kadkhodayan, and M. Shariati, "Springback evaluation of commercial pure ultrafine-grained titanium in three-point bending test," (in en), Modares Mechanical Engineering, vol. 16, no. 11, pp. 266-276, 2017. [Online]. Available: https://mme.modares.ac.ir/article_9646.html.
[10]         M. Fan, Y. Fan, M.-Q. Niu, and L.-Q. Chen, "A semi-submerged vortex-induced bending-torsional vibration energy harvester: design, modeling, and experimental validation," Mechanical Systems and Signal Processing, vol. 241, p. 113434, 2025/12/01/ 2025, DOI:10.1016/j.ymssp.2025.113434.
[11]         Z. Jiao, S. Zhao, G. Wang, R. Xu, and J. Yang, "Bending and vibration analyses of functionally graded auxetic doubly curved shells via dual mesh control domain model," International Journal of Solids and Structures, vol. 320, p. 113526, 2025/09/01/ 2025, DOI:10.1016/j.ijsolstr.2025.113526.
[12]         T. Wang et al., "A high-performance longitudinal–bending ultrasonic vibration horn: structural innovation and dynamic testing," Ultrasonics, vol. 159, p. 107835, 2026/03/01/ 2026, DOI:10.1016/j.ultras.2025.107835.
[13]         J. Xiao, J. Lv, X. Xia, and J. Wang, "Flexoelectric and surface effects on bending deformation and vibration of piezoelectric nanolaminates: Analytical solutions," Applied Mathematical Modelling, vol. 135, pp. 541-558, 2024/11/01/ 2024, DOI:10.1016/j.apm.2024.07.010.
[14]         M. Elyasi, V. Modanloo, H. Talebi Ghadikolaee, F. Ahmadi Khatir, and B. Akhoundi, "Investigating the Effect of Heat Treatment on the Hydrodynamic Rotary Draw Bending of 6063 Aluminum Alloy Tubes," (in en), Modares Mechanical Engineering, vol. 23, no. 4, pp. 257-264, 2023, doi: 10.22034/mme.23.4.257.
[15]         D. Shi, L. Yan, X. Zhuang, and Q. Xie, "The bending vibration characteristics of the hull grillage structure based on back propagation neural network," Ocean Engineering, vol. 337, p. 121870, 2025/10/01/ 2025, DOI:10.1016/j.oceaneng.2025.121870.
[16]         G.-M. Julio C, "Bending Splitting-Frequency Index (BSFI) a Nonlinear Method & Damage Characterization for 1-D Vibration-based SHM," Procedia Structural Integrity, vol. 68, pp. 318-324, 2025/01/01/ 2025, DOI:10.1016/j.prostr.2025.06.060.
[17]         N. Wattanasakulpong and A. Chaikittiratana, "A comprehensive study on bending, buckling and vibration of sandwich beams made of FG-GPLRC faces and FGP core using a quasi-3D theory," Structures, vol. 74, p. 108561, 2025/04/01/ 2025, DOI:10.1016/j.istruc.2025.108561.
[18]         A. Karamanli, T. P. Vo, M.-O. Belarbi, and S. Lee, "On the bending, buckling and free vibration analysis of bio-inspired helicoidal laminated composite shear and normal deformable beams," Composite Structures, vol. 352, p. 118641, 2025/01/15/ 2025, DOI:10.1016/j.compstruct.2024.118641.
[19]         L. Nie, X. Wang, J. Zhang, Z. Ma, L. Zhang, and W. Guo, "Dynamic characteristics analysis and vibration control of coupled bending-torsional system for axial flow hydraulic generating set," Chaos, Solitons & Fractals, vol. 187, p. 115401, 2024/10/01/ 2024, DOI:10.1016/j.chaos.2024.115401.
[20]         Y. Wang et al., "Nitsche-based isogeometric analysis of bending and free vibration of stiffened FGM plates with cutouts," Computers & Structures, vol. 310, p. 107677, 2025/04/01/ 2025, DOI:10.1016/j.compstruc.2025.107677.
[21]         A. Xiao, Z. Yan, C. Huang, Z. Yu, S. Wang, and X. Cui, "Reduction of springback of Ti6Al4V alloy by high-density and instantaneous pulsed current," Materials Science and Engineering: A, vol. 877, p. 145188, 2023/06/22/ 2023, DOI:10.1016/j.msea.2023.145188.
[22]         Z. Ma et al., "Effect of ultrasonic vibration on the roll bending deformation behavior of ultra-thin-walled corrugated sheets," Materials Today Communications, vol. 41, p. 110497, 2024/12/01/ 2024, DOI:10.1016/j.mtcomm.2024.110497.
[23]         M. Shafiee Alavijeh, h. Torabian, and S. Adib Nazari, "Analysis of Factors Affecting Springback and Side-Wall Curvature in U-Shaped Bending of Dual-Phase Steel Sheets," (in en), Modares Mechanical Engineering, vol. 13, no. 1, pp. 13-23, 2013. [Online]. Available: https://mme.modares.ac.ir/article_8027.html.
[24]         E. Soorani Yancheshmeh, A. Mohammadi, and A. ghaei, "An Experimental Investigation of the Effect of Ultrasonic Vibrations on Springback in Sheet Metal Bending Process," (in en), Iranian Journal of Manufacturing Engineering, vol. 12, no. 2, pp. 70-81, 2025, doi: 10.22034/ijme.2025.502295.2044.
[25]         I. Bobrovskij, A. Khaimovich, N. Bobrovskij, J. A. Travieso-Rodriguez, and F. Grechnikov, "Derivation of the Coefficients in the Coulomb Constant Shear Friction Law from Experimental Data on the Extrusion of a Material into V-Shaped Channels with Different Convergence Angles: New Method and Algorithm," Metals, vol. 12, no. 2, p. 239, 2022. [Online]. Available: https://www.mdpi.com/2075-4701/12/2/239.
[26]         C. Wang, R. Ma, J. Zhao, and J. Zhao, "Calculation method and experimental study of coulomb friction coefficient in sheet metal forming," Journal of manufacturing processes, vol. 27, pp. 126-137, 2017.