مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تاثیر شکاف ایرفول NACA 23015 بر روی عملکرد آیرودینامیکی آن در زوایای حمله مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان
گروه مهندسی مکانیک، مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، ایران
10.48311/mme.2026.118854.82947
چکیده
امروزه طراحی ایرفویل‌ها به‌ویژه در پرنده‌های بدون سرنشین و هواپیماهای سبک، اهمیت زیادی پیدا کرده است. بهینه‌سازی عملکرد آیرودینامیکی می‌تواند تأثیر زیادی در کاهش مصرف سوخت و بهبود پایداری پروازی داشته باشد. در این پژوهش، اثرات هندسی استفاده از شکاف در ایرفویل ناکا - 23015 با در نظر گرفتن پارامترهای آیرودینامیکی بررسی شده است. برای این منظور، جریان هوای تراکم پذیر اطراف ایرفویل در نرم افزار انسیس فلوئنت شبیه سازی شده است. هوا با ماخ 25/0 به ایرفویل برخورد کرده و از مدل آشفتگی کا - امگا برای مدل‌سازی جریان آشفته استفاده شده است. سپس تاثیر شکل هندسی شکاف در چهار زاویه حمله 0، 5، 10، و 15 درجه بر عملکرد آیرودینامیکی ایرفویل بررسی شد. هندسه‌های مورد بررسی برای شکاف شامل قوس نیم‌دایره‌ای، شکاف اریب با زوایای 20، 25، 30، و 35 درجه، شکاف منحنی با زوایای 20، 25، و 30 درجه است. نتایج نشان می‌دهد با افزایش زاویه حمله، نیروی بالابر در تمامی حالت‌های شکاف ایرفویل، افزایش می‌یابد، در حالی‌که با افزایش زاویه حمله از صفر تا 5 درجه، ابتدا مقدار نیروی مقاوم کاهشی بوده، و سپس با افزایش زاویه حمله از 5 درجه به 10 و 15 درجه، مقدار نیروی مقاوم افزایش می‌یابد. برای ایرفویل با شکاف‌های هندسی مختلف، بیشترین عملکرد آیرودینامیکی در زاویه حمله 5 درجه و کمترین عملکرد آیرودینامیکی در زاویه حمله صفر مشاهده شد. در زوایای حمله صفر و 5 درجه، ایرفویل با شکاف قوس نیمدایره‌ای و برای زوایای حمله 10 و 15 درجه ایرفویل با شکاف اریب 30 درجه بیشترین عملکرد آیرودینامیکی را دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Effect of the NACA 23015 Airfoil Gap on its Aerodynamic Performance at Various Angles of Attack

نویسندگان English

Amin Nabati
Morteza Saadat Targhi
Ali Rezaei
Mechanical Engineering Department, Esfarayen University of Technology, Esfarayen, Iran
چکیده English

Nowadays, airfoil design has become increasingly important, particularly in unmanned aerial vehicles and light aircraft. Optimizing aerodynamic performance can significantly reduce fuel consumption and enhance flight stability. This study investigates the geometric effects of incorporating a slot in the NACA-23015 airfoil by analyzing aerodynamic parameters. The compressible airflow around the airfoil is simulated using ANSYS Fluent software. The air impacts the airfoil at Mach 0.25, and the K-Omega turbulence model is employed to simulate turbulent flow. The study examines the impact of the slot's geometric shape at angles of attack of 0, 5, 7.5, 10, and 15 degrees on the airfoil's aerodynamic performance. The investigated gap geometries include a semicircular arc, oblique gap angles of 20, 25, 30, and 35 degrees, and curved gap angles of 20, 25, and 30 degrees. The results indicate that as the angle of attack increases, the lift force rises in all gap configurations, while the drag force initially decreases from zero to 5 degrees of angle of attack, and then increases from 5 to 10 and 15 degrees. The airfoils with different gap geometries exhibit the highest aerodynamic performance at a 5-degree angle of attack and the lowest at zero degrees. Specifically, airfoils with a semicircular arc gap perform best at zero and 5 degrees of angle of attack, while airfoils with a 30-degree oblique gap excel at 10 and 15 degrees of angle of attack

کلیدواژه‌ها English

NACA 23015 airfoil, Lift force, Drag force, Attack angle, Aerodynamic performance
[1] S.S. Hoseininezhad, N. Amanifard, H. Mohaddes Deylami and F. Dolati, "Numerical study of flow characteristics around a NACA 4412 asymmetric airfoil under the influence of electric field," Modares Mechanical Engineering, vol. 14, no. 5, pp. 147-154, 2014. doi: 20.1001.1.10275940.1393.14.5.19.6
[2] A. Rabienataj Darzi and S. Vadudi Mofid, "Flow Control via Co-Flow Jet over Clark-Y Airfoil," Modares Mechanical Engineering, vol. 17, no. 2, pp. 147-156, 2017. doi: 20.1001.1.10275940.1396.17.2.32.4
[3] M.Y. Hashemi and H. Rasooli Khorjestan, Investigation of the effects of boundary layer heating on the aerodynamics coefficients of transonic airfoil using the computational fluid dynamics, Journal of Selected Topics in Energy, vol. 2, no. 1, pp. 42-48, 2017.
[4] P. Akbarzadeh and M. Mostafavi, "The effect of the blowing and suction from one or two positions over the suction surface of NACA0012 airfoil on aerodynamic performance in turbulent flow," Journal of Modeling in Engineering, vol. 15, no. 51, pp. 331-340, 2017. doi: 10.22075/jme.2017.2849
[5] M. Kazemian, A. Kazemian and S. Jaafarian, "Effect of Gurney Flap on Airfoil Lift Coefficient by Design of Experiment (DOE) Method," Modares Mechanical Engineering, vol. 19, no. 12, pp. 2857-2863, 2019. doi: 20.1001.1.10275940.1398.19.12.6.2
[6] M. Moshfeghi, S. Shams, M. Ramezani and N. Hur, "Effect of Split on Flow Separation Reduction of Wind Turbine Airfoil using DES Turbulence Model,"Modares Mechanical Engineering, vol. 20, no. 2, pp. 381-390, 2020. doi: 20.1001.1.10275940.1398.20.2.3.2 
[7] M.A. Ranjbar, H. Barkhordari, and R. Mahmodi toroghi, "Simulation and Analysis of the Effect of Dimple on the Aerodynamic Performance of Flow Around Drone Wings," Fluid Mechanics & Aerodynamics, vol.9, no. 1, pp. 17-28, 2020. doi: 20.1001.1.23223278.1399.9.1.2.0
[8] M. Gheidi Shahran, P. Hashemi Tari, M. Majdam, "Investigation of the aerodynamic performance of the NACA 4412 airfoil under fluctuating inlet flow conditions," Journal of Mechanical Engineering, vol. 52, no. 2, pp. 177-186, 2021. doi: 10.22034/jmeut.2021.10452  
[9] M. Asghari, S. Karimian Aliabadi and M. Y. Hashemi, "Study the effect of suction flow control on the aerodynamic performance of a wind turbine using 2D section numerical Results," Sharif Journal of Mechanical Engineering, vol. 37.3, no. 1, pp. 79-89, 2021. doi: 10.24200/j40.2021.56336.1561
[10] A. Sharafi, "Numerical investigation of simultaneous blowing and suction on the airfoil wing of a maneuverable aircraft," Journal of Mechanical Engineering, vol. 52, no. 4, pp. 203-211, 2022. doi: 10.22034/jmeut.2022.52218.3130 
[11] A. Nabati, M. Sadrodin, "Aerodynamic study of two flat plate airfoils and a NACA64-206 airfoil at different Mach numbers," The fifth National Conference on Computational and Experimental Mechanics, 2023.
[12] M. Izadi, A. Shams Taleghani and R. Khaki, "Numerical Study of Slot Lip Effects on Aerodynamics Performance of a Two-Element Airfoil with the Approach of Decreasing the Landing Distance," Journal of Solid and Fluid Mechanics, vol. 13, no. 1, pp. 99-109, 2023.  doi: 10.22044/jsfm.2023.12278.3647
[13] A. Fallahian, A. Shams Taleghani and K. Esmailpour, "Three-dimensional numerical study of the effect of blowing angle on the aerodynamic characteristics of a wing section with NACA 0012 airfoil," Aerospace Knowledge and Technology Journal, vol. 12, no. 1, pp. 221-238, 2023.
[14] H. Seifi, S. Kouravand and M. Seifi Davary, "Numerical and experimental study of NACA airfoil in low Reynolds numbers for use of Darriues vertical axis micro-wind turbine," Journal of Renewable and New Energy, vol. 10, no. 2, pp. 149-163, 2023. doi: 10.52547/jrenew.10.2.149
[15] E. Roohi, H. Abolghasemi and M. J. Amiri, "Investigating the Effect of Moving Surface on NACA 0012 Airfoil in High-Speed Ratio," Journal of Applied and Computational Sciences in Mechanics, vol. 35, no. 3, pp. 75-84, 2023. doi: 10.22067/jacsm.2023.77061.1124
[16] A. Goudarzi, A. Mohammadi Ahmar, A. Mohammadi, H. Mansouri, "Uncertainty Quantification of Transonic RAE2822 Airfoil under Geometrical Uncertainties," Fluid Mechanics & Aerodynamics, vol. 12, no. 2, pp. 33-42, 2024. doi: 20.1001.1.23223278.1402.12.2.3.4
[17] M. Abedi and R. Zakeri, "Experimental study of the aerodynamics of micro airfoils with wavy surface and the use of different patterns inspired by nature," Journal of Technology in Aerospace Engineering, vol. 9, no. 2, pp. 31-42, 2025. doi: 10.22034/jtae.2025.9.2.3
[18] T. A. Orvi, I. Hossain and M. Hassan, "Computational and experimental investigation of lower-surface dimple effects on NACA 0015 airfoil aerodynamics," Engineering Science and Technology, an International Journal, vol. 72, 102228, 2025. doi: 10.1016/j.jestch.2025.102228.
[19] H. Kaviani and E. Bashtalam, "Computational Analysis of the Effect of Leading-Edge Erosion Intensity on Aerodynamic Noise," Journal of Vibration and Sound, vol. 13, no. 26, e723077, 2025.
[20] P. Scavella, G. Paolillo and C.S. Greco, "Deep reinforcement learning-based airfoil design and optimization: An aerodynamic analysis," Aerospace Science and Technology, vol. 167, 110638, 2025. doi: 10.1016/j.ast.2025.110638
[21] H. Fatahian, H. Salarian, M. Eshagh Nimvari and J. Khaleghinia, "Computational fluid dynamics simulation of aerodynamic performance and flow separation by single element and slatted airfoils under rainfall conditions, Applied Mathematical Modelling," vol. 83, pp. 683-702, 2020. doi: 10.1016/j.apm.2020.01.060.
[22] A.M. Elsayed, O.A. Gaheen, H. Elshimy, E. Benini and M.A. Aziz, "Bio-inspired pressure side stepped NACA 23012 C as wind turbine airfoils in low Reynolds number," Energy Reports, vol. 13, pp. 3728-3744, 2025. doi: 10.1016/j.egyr.2025.03.029