مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

ارتقاء بهره‌وری انرژی در واحد بوتادین پتروشیمی شازند از طریق تکنولوژی پینچ و سیستم تولید همزمان حرارت و توان (CHP) مبتنی بر انرژی زمین‌گرمایی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، ‌دانشگاه علم و صنعت ایران، تهران، ‌ایران
2 گروه مهندسی سیستم‌های انرژی، دانشکده فناوری‌های نوین، دانشگاه علم و صنعت ایران، تهران، ایران
10.48311/mme.2026.96878.0
چکیده
یکی از فناوری‌های مورد استفاده در حوزه بهبود مصرف انرژی که قدمتی پنجاه ساله دارد، تکنولوژی پینچ می‌باشد. این رویکرد با تمرکز بر روی نقطه پینچ سعی دارد شبکه مبدل حرارتی را طراحی کند که دارای بیشترین بازیافت حرارت و کمترین هدررفت گرماست. در این پژوهش، با استفاده از فناوری پینچ، واحد تفکیک بوتادین شرکت پتروشیمی شازند مورد بررسی قرار گرفت و شبکه‌ای از مبدل‌های حرارتی جهت کسب بیشترین سهم از بازیافت حرارت در آن مجموعه پیشنهاد شد. در این حالت شبکه مبدلی با 27 تبادل‌کننده حرارت طراحی گردید که میزان بار گرمایش و سرمایش آن نیز به ترتیب مقادیر kJ/h209910 وkJ/h  194100 را به خود اختصاص دادند. همچنین شبکه ایجاد شده مورد بهسازی نیز قرار گرفت که مشخص شد که در طراحی جدید میزان بار گرمایش و سرمایش در مجموعkJ/h 54000 کاهش یافت و تعداد مبدل‌ها 6 عدد افزایش یافت. در ادامه، با توجه به نیاز بار حرارتی و توان الکتریکی واحد، یک سیستم تولید همزمان حرارت و توان (CHP) مبتنی بر انرژی زمین‌گرمایی برای تامین این نیازها طراحی و با شبکه مبدل‌های حرارتی ادغام (Integration) شد. این سیستم قادر است علاوه بر تامین توان الکتریکی مورد نیاز (625/410 کیلووات)، بخش قابل توجهی از بار گرمایشی سیستم (11/40 کیلووات) را نیز از طریق بخار فشار متوسط تولیدی خود تامین کند. این ادغام فرآیند منجر به کاهش قابل توجه هزینه‌های جاری و مصرف انرژی در واحد شد و پایداری و بهره‌وری سیستم را به شکل چشمگیری افزایش داد
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Enhancing Energy Efficiency in Shazand Petrochemical's Butadiene Unit Through Pinch Technology and a Geothermal-Based Combined Heat and Power (CHP) System

نویسندگان English

Ali Moshiri 1
Mohammad Javad Raji Asadabadi 1
Rouhollah Ahmadi 2
1 Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran
2 New Technologies Department, Iran University of Science and Technology, Tehran, Iran
چکیده English

One of the technologies used in the field of energy efficiency improvement, with a history of fifty years, is the Pinch technology. This approach focuses on the pinch point in order to design a heat exchanger network that achieves the highest possible heat recovery with the least thermal losses. In this study, using Pinch technology, the butadiene separation unit of the Shazand Petrochemical Company was analyzed, and a network of heat exchangers was proposed to maximize heat recovery within the system. In this case, a heat exchanger network with 27 exchangers was designed, where the heating and cooling loads were 209,910 kJ/h and 194,100 kJ/h, respectively. Furthermore, the proposed network was optimized, and it was determined that in the new design, the total heating and cooling loads decreased by 54,000 kJ/h, while the number of exchangers increased by six. Subsequently, considering the unit’s thermal and electrical power demands, a combined heat and power (CHP) system based on geothermal energy was designed and integrated with the heat exchanger network. This system is capable of supplying not only the required electrical power (410.625 kW) but also a significant portion of the unit’s heating load (40.11 kW) through the medium-pressure steam it generates. This integration resulted in a considerable reduction in operating costs and energy consumption in the unit, while significantly enhancing the system’s sustainability and efficiency

کلیدواژه‌ها English

Pinch Technology
Process Integration
Combined Heat and Power (CHP)
Geothermal Energy
Heat‐Exchanger Network
[1] A. Moshiri and M. J. Raji Asadabadi, “Numerical Study of a System Based on Phase Change Materials for Energy Storage in Buildings Considering the Geometric Characteristics of Integrated Fins,” Modares Mech. Eng., vol. 25, no. 3, pp. 163–174, 2025. doi: 10.48311/mme. 2025.11470
[2] B. Linnhoff, G. Polley, and V. Sahdev, “General process improvements through pinch technology,” Chem Eng ProgUnited States, vol. 84, no. 6, 1988. doi: 10.1016/0098-1354(79)80049-6
[3] M. J. R. Asadabadi, S. H. Rad, M. Taraghi, M. Moghimi, and R. Ahmadi, “ANN-boosted optimization and performance evaluation of a hybrid solar-geothermal high temperature cascaded ORC for electricity, liquid hydrogen, freshwater, and cooling purposes,” Appl. Therm. Eng., vol. 262, p. 125251, 2025. doi: 10.1016/ j.applthermaleng.2024.125251
[4] T. Umeda, “Heat exchange system synthesis,” CEP, vol. 74, pp. 70–76, 1978. CRID: 1571698601 416032000
[5] B. Linnhoff and J. R. Flower, “Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks,” AIChE J., vol. 24, no. 4, pp. 633–642, 1978. doi: 10.1002/aic.690240411
[6] M. M. El‐Halwagi and V. Manousiouthakis, “Synthesis of mass exchange networks,” AIChE J., vol. 35, no. 8, pp. 1233–1244, 1989. doi: 10.1002/aic.690350802
[7] T. Yuan and Y. Mao, “A review of pinch analysis techniques and extended application in power systems,” Renew. Sustain. Energy Rev., vol. 202, p. 114684, 2024. doi: 10.1016/j.rser.2024.114684
[8] J. M. John, S. R. W. Alwi, P. Y. Liew, D. I. Omoregbe, and U. Narsingh, “A comprehensive carbon dioxide reduction framework for industrial site using pinch analysis tools with a fuel cell configuration,” J. Clean. Prod., vol. 362, p. 132497, 2022. doi: 10.1016/j.jclepro.2022.132497
[9] R. Smith and T. Kudra, “Chemical Process Design,” Dry. Technol., vol. 15, no. 10, pp. 2617–2618, 1997. doi: 10.1002/04712389 61
[10] A. Manizadeh, A. Entezari, and R. Ahmadi, “The energy and economic target optimization of a naphtha production unit by implementing energy pinch technology,” Case Stud. Therm. Eng., vol. 12, pp. 396–404, 2018. doi: 10.1016/j.csite. 2018.05.005
[11] S. El-Temtamy, I. Hamid, E. Gabr, and A. E.-R. Sayed, “The Use of Pinch Technology to Reduce Utility Consumption in a Natural Gas Processing Plant,” Pet. Sci. Technol., vol. 28, no. 13, pp. 1316–1330, 2010. doi: 10.1080/10916460902839248
[12] I. Paiko, O. Azeez, N. Makwashi, and D. Zhao, “Pinch Analysis in Optimizing Energy Consumption on a Naptha Hydrotreating Unit in a Refinery.,” 2017. doi: 10.23880/PPEJ-16000126
[13] S. Mrayed, M. B. Shams, M. Al-Khayyat, and N. Alnoaimi, “Application of pinch analysis to improve the heat integration efficiency in a crude distillation unit,” Clean. Eng. Technol., vol. 4, p. 100168, 2021. doi: 10.1016/j.clet.2021.100168
[14] K. Nemati-Amirkolaii, H. Romdhana, and M.-L. Lameloise, “Pinch methods for efficient use of water in food industry: a survey review,” Sustainability, vol. 11, no. 16, p. 4492, 2019. doi: 10.3390/su11164492
[15] H. Kalantar-Neyestanaki, M. Mafi, and A. Ashrafizadeh, “Operational Minimization of Multi-Stage Refrigeration Cycles’ Power Consumption in Gas Refineries Based on the Combination of Thermodynamics Analysis and Pinch Technology,” mdrsjrns, vol. 17, no. 6, pp. 1–12, Aug. 2017. doi: 10.1038/s41598-024-84765-7
[16] M. Ebrahimi, “Potentials of the gas turbine of Ilam Gas Refinery Company for large scale combined cooling, heating, power and process (CCHPP),” mdrsjrns, vol. 16, no. 10, pp. 115–126, Jan. 2017.
[17] T. G. Walmsley, B. J. Lincoln, R. Padullés, and D. J. Cleland, “Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques,” Energies, vol. 17, no. 12, p. 2838, June 2024, doi: 10.3390/en17122838.
[18] I. H. Alhajri, M. A. Gadalla, O. Y. Abdelaziz, and F. H. Ashour, “Retrofit of heat exchanger networks by graphical Pinch Analysis–A case study of a crude oil refinery in Kuwait,” Case Stud. Therm. Eng., vol. 26, p. 101030, 2021. doi: 10.1016/j.csite .2021.101030
[19] K. Zhi et al., “Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process,” Energy, vol. 299, p. 131538, 2024. doi: 10.1016/j.energy. 2024.131538