مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

پیش بینی سختی در نانو کامپوزیت‌های Al-Al2O3 با استفاده از شبکه عصبی مصنوعی با تغییر عوامل موثر در روش آلیاژسازی مکانیکی

نویسندگان
1 دانشگاه صنعتی خواجه نصیرالدین طوسی
2 دانشکده مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران
3 دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز
چکیده
در این پژوهش یک شبکه عصبی پیشرو با الگوریتم پس انتشار خطا، برای پیش بینی سختی نانوکامپوزیت های پایه آلومینیوم با تقویت کننده آلومینا، که به روش آلیاژسازی مکانیکی و پرس گرم تولید شده بودند، با استفاده از داده های موجود طراحی شد. درصد حجمی تقویت کننده، اندازه ذرات تقویت کننده نانومتری، نیروی وارد شده در آزمون سختی ویکرز؛ همچنین عوامل موثر بر فرآیند آلیاژسازی مکانیکی مانند زمان آسیاب کاری، نسبت وزنی گلوله به پودر و سرعت آسیاب به عنوان متغیرهای ورودی شبکه و عدد سختی ویکرز به عنوان متغیر خروجی شبکه درنظر گرفته شدند. عوامل موثر در آموزش شبکه مانند نرخ آموزش، تعداد لایه های پنهان و تعداد نرون های لایه های پنهان؛ با سعی و خطا تعیین شدند. برای بررسی عملکرد شبکه، از نمودارهای رگرسیون در مراحل آموزش، صحت سنجی و تست؛ و همچنین از میانگین مربعات خطا استفاده شد. شبکه عصبی طراحی شده قادر است سختی ویکرز داده های تست را با میانگین خطای 2.67 درصد یا 2.25 ویکرز پیش بینی نماید. همچنین میانگین مربعات خطا در مرحله صحت سنجی 7.76 بود. با استفاده از شبکه عصبی طراحی شده، سختی ویکرز نانو کامپوزیت آلومینیوم-آلومینا، بدون نیاز به کارهای آزمایشگاهی پرهزینه، قابل پیش بینی می باشد.
کلیدواژه‌ها

عنوان مقاله English

Prediction of hardness in Al-Al2O3 nanocomposite using artificial neural network with alternation in effective parameters of mechanical alloying method

نویسندگان English

ali shokuhfar 1
saedeh ghorbanpoor 2
sajad nasiri 3
ashkan zolriasatein 2
ali asghar ajafari 2
چکیده English

In this study a feed forward back propagation artificial neural network (ANN) model was established to predict Vickers microhardness in aluminum-alumina nanocomposites which have been synthesized by mechanical alloying and hot pressing. Volume percent of reinforcement, size of nanoparticles, force in microhardness test; and mechanical alloying parameters, such as time, ball to powder ratio (BPR) and speed of ball mill were used as the inputs and Vickers microhardness as the output of the model. Effective parameters in training such as learning rate, hidden layers and number of neurons, were determined by trail and error due to amount and percentage of errors. Regression analysis in train, validation and test stages; and mean squared error were used to verify the performance of neural network. Average error of predicted results was 2.67% or 2.25 Vickers. Also mean squared error for validation data was 7.76. As can be expected, ANN methods reduce the expenses of experimental investigations, by predicting the optimum parameters.

کلیدواژه‌ها English

Aluminum Based Nanocomposite
Vickers Microhardness
Mechanical Alloying
artificial neural network