مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه سازی جریانهای الکترواسموتیک موازی به روش لتیس بولتزمن

نویسندگان
1 دانشجوی دکتری - دانشگاه فردوسی مشهد
2 دانشیار گروه مکانیک/ دانشگاه فردوسی مشهد
3 استادیار دانشگاه بیرجند
چکیده
در این مقاله با ارائه دو مدل جدید و مناسب از معادلات پواسون و ارنست - پلانک در روش لتیس بولتزمن، جریان الکترواسموتیک در یک ریزمجرای تخت با توزیع غیر یکنواخت بار سطحی دیوار مورد بررسی قرار گرفته است. حل معادلات ارنست - پلانک در تعیین توزیع یونها از آن جهت حائز اهمیت است که بر خلاف توزیع بولتزمن، اثر مکانیزم مهم جابجایی نیز در توزیع یونها لحاظ می شود. ارزیابی صحت مدل به کمک شبیه سازی تغییرات پتانسیل الکتریکی و جریان الکترواسموتیک در یک ریزمجرای تخت با بار سطحی یکنواخت که حل تحلیلی و عددی آن نیز موجود است، صورت گرفته است. در نهایت جریان الکترواسموتیک در یک مجرا با بار سطحی غیر یکنواخت (موضعی) در دوحالت منفرد و موازی شبیه سازی و مورد بررسی قرار میگیرد.
کلیدواژه‌ها

عنوان مقاله English

Simulation of parallel electroosmotic flows with lattice Boltzmann method

نویسندگان English

Omid Mohammadipoor 1
Seyed Ali Mirbozorgi 3
1 PhD student - Ferdowsi University of Mashhad
چکیده English

In the present work a new lattice Boltzmann (LB) framework has been developed to study the electroosmotic flows in a 2-D flat microchannel. The governing equations are presented in the continuum model, while a set of equivalent equations in LB model is introduced and solved numerically. In particular, the Poisson and the Nernst–Planck (NP) equations are solved by two new lattice evolution methods. In the analysis of electroosmotic flows, when the convective effects are not negligible or the Electric Double Layers (EDLs) have overlap, the NP equations must be employed to determine the ionic distribution throughout the microchannel. The results of these new models have been validated by available analytical and numerical results. The new framework has also been used to examine the electroosmotic flows in single and parallel heterogeneous microchannels.

کلیدواژه‌ها English

Electroosmotic flow
Lattice Boltzmann Method
Nernst–Planck equation
Poisson equation