

ماهنامه علمي پژوهشي

مهندسي مكانيك مدرس

مطالعه عددی تاثیر ایجاد شیار روی مخروطی چرخ پمپ- توربین بر الگوی جریان گردابهای لوله مکش

 2 احسان علیزاده 1 ، سید سینا حسینی 1 ، علیرضا ریاسی

- 1- كارشناس ارشد، مهندسى مكانيك، دانشگاه تهران، تهران
 - 2- استادیار، مهندسی مکانیک، دانشگاه تهران، تهران
- " تهران، صندوق پستی ariasi@ut.ac.ir ،11155-4563

مكنده

اطلاعات مقاله

مقاله پژوهشی کامل
دریافت: 13 تیر 1393
پذیرش: 09 مهر 1393
ارائه در سایت: 40 آبان 1393
کلید واژگان:
پمپ - توربین
نوسانات فشار
شیار
مخروطی چرخ
طناب گردابه

نوسانات شدید فشار ناشی از طناب گردابه در مخروطی زیر چرخ و لوله مکش پمپ- توربین در عملکرد بار جزئی حالت توربینی، باعث ایجاد ارتعاشات شدید، سر و صدا و افت عملکرد میشود. متداول ترین روش برای کاهش این نوسانات تزریق هوا از محور توربین است. این روش دارای مشکلاتی نظیر تأثیر منفی بر بازده، هزینه زیاد و پیچیدگی فنی بالا میباشد. در این مقاله، به منظور غلبه بر این مشکلات، ایجاد شیار بر روی سطح مخروطی چرخ به منظور کاهش نوسانات و تغییرات فشار در لوله مکش و به تبع آن کاهش ارتعاشات توربین در دو حالت پمپی و توربینی مطالعه شده است. در این راستا ابتدا هندسهی چرخ و لوله مکش براساس مشخصات هیدرولیکی و اطلاعات موجود از نیروگاه سیاه بیشه طراحی شده است. در ادامه میدان سه بعدی جریان با استفاده از نرم افزار انسیس سی اِف ایکس تحلیل و درستی نتایج با بررسی استقلال حل از شبکه و مقایسهی با نتایج تجربی راستی آزمایی شدهاند. بیش ترین اختلاف بین عملکرد طراحی انجام شده و طرح واقعی کمتر از 2 درصد میباشد. نتایج نشان میدهد که ایجاد شیار بر روی سطح مخروطی چرخ در حالت توربینی باعث افزایش سرعت زیر مخروطی چرخ، کاهش تغییرات فشار و همچنین کاهش می مساحت نواحی کم فشار در ابتدای لوله مکش در دو وضعیت مساحت نواحی کم فشار در ابتدای لوله مکش می شود. بیش ترین کاهش تغییرات فشار در ایتدای لوله مکش در دو وضعیت بازشدگی پرههای هادی کمتر از 00 % و بیشتر از 90% نقطه اسمی اتفاق می افتد. افزون بر این، حداکثر افت بازده در طرح اصلاح شده کمتر از 30/3 درصد بوده است. همچنین در حالت پمپی به دلیل تغییر جهت چرخش میزان سرعت مماسی در زیر چرخ

Numerical Investigation of the Effect of Locating Groove on the Runner Cone of **a** Pump-Turbine on the Vortex Flow in the Draft Tube

Ehsan Alizadeh¹, Seyed Sina Hosseini¹, Alireza Riasi^{2*}

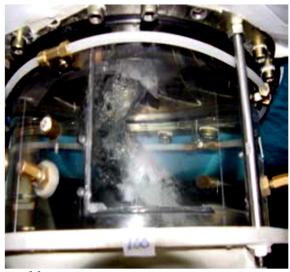
- 1- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
- 2- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
- * P.O.B. 11155-4563 Tehran, Iran, ariasi@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 04 July 2014 Accepted 01 October 2014 Available Online 26 October 2014

Keywords: Pump-Turbine Pressure Pulsations Groove Runner Cone Vortex rope

ABSTRACT


Intense pressure pulsations, which are caused by the vortex rope in the runner cone and the draft tube of pump-turbines, result in vibrations and noise under partial load conditions in turbine mode and also reduce the machine's efficiency. The most common method for reducing these fluctuations is injecting air through the shaft. This method has some disadvantages such as, negative influence on efficiency, high cost, and technical difficulties. In the present paper, the concept of locating grooves on the conic surface of runner has been investigated. In this regard, the runner and the draft tube geometry have been designed according to the specifications and the accessible information of Siah-Bishe project. Afterwards, the 3-dimensional flow field has been solved numerically, using Ansys CFX package. The numerical results have been verified by investigating their independency from grid size and comparing the results with experimental ones. Maximum difference between the proposed and the existing design's performance is than 2 percent. The results indicate that locating grooves on the conic surface of the runner results in an increase in the flow velocity beneath the runner cone. Moreover, pressure pulsations have been decreased and the low-pressure area at the beginning of the draft tube shrank. The maximum amount of decrease in pressure pulsations has been recorded in two opening positions of the guide vanes (lower than 60% and more than 90% of design point). In addition, maximum efficiency drop in the revised design is less than 0.3 percent. Furthermore, because of the rotational direction change in the pump mode, the magnitude of the tangential velocity is increased.

1- مقدمه

امروزه امکان ذخیرهسازی و بازیابی مقدار عظیمی از انرژی به صورت بسیار سریع، یکی از چالشهای اصلی روبروی صنعت انرژی میباشد. هم اکنون نیروگاههای تلمبه ذخیرهای (پمپ توربینی) یکی از چندین راه موجود برای ارضاء این دو نیازمندی هستند. انرژی باد، انرژی خورشیدی و انرژی دریایی همگی انرژیهایی میرا محسوب میشوند؛ بدین معنی که اگر انرژی تولید شده سریعا مصرف نشود و یا در ساعات بیشینهی مصرف تولید نگردد، هدر میرود. بنابراین، ذخیرهسازی این نوع انرژیها تنها راه مدیریت تولید توان میباشد. این کار، بنا به نیاز، با هموار کردن منحنیهای تولید و مصرف صورت می پذیرد. مطلوب آن است که یک توربین آبی براساس شرایط توانایی پاسخ سریع به نیازهای شبکه را داشته باشد. این امر نیازمند محدودهی عملکرد وسیع تر نسبت به شرایط نامی است.

بدین منظور توربینهای آبی یا پمپ- توربینها معمولاً تحت شرایطی کار میکنند که کسری از شرایط نامی طراحی هستند. این شرایط را بار جزئی^ا مینامند. در این شرایط، توده فشاری که به علت طناب گردابه مارپیچ 2 ناشی از کاویتاسیون 3 در لوله مکش 4 تشکیل میشود، پدیدهای مهم در ایجاد محدودیت عملکرد توربین میباشد. سرعت در خروجی چرخ دارای مؤلفهی جانبی است. این مولفه تمایل دارد تا جریان اصلی در لوله مکش را به سمت دیوارهها حرکت داده و آب حول مرکز لوله مکش، که اصطلاحاً هسته آب مرده ٔ نامیده میشود، را به صورت ایستا باقی نگاه دارد. در این حالت لایههای تنش برشی قوی باعث ایجاد کاویتاسیون و به تبع آن شکل گیری طناب كاويتاسيون مي شود. معمولاً چنين طنابهاي كاويتاسيون با حدود 3/0 سرعت دورانی چرخ می چرخند و باعث تولید سر و صدا، ارتعاش و نوسانات فشار میشوند. در صورت تطابق یکی از فرکانسهای طبیعی مجموعه تجهیزات الکترومکانیک و یا آبراههها با این فرکانس، احتمال تشدید 6 و به تبع آن ارتعاشات دامنه بزرگ بسیار بالا خواهد رفت. همچنین باعث افت عملکرد سیستم به صورت افزایش تلفات، کاهش بازده، تغییر در گشتاور بره و کاهش دبى مى گردد[1].

از دهه 1950 میلادی، بسیاری از متخصصین نوسانات فشار ایجاد شده در لوله مکش را مورد مطالعه و آزمایش قرار دادهاند. برای کسب اطمینان از محدودههای وسیعتر با عملکرد پایدار، تحقیقات بسیاری در فرونشاندن توده فشار شکل گرفته در لوله مکش انجام گرفته است. در سال 2002 پاپیلون و همكارانش انواع روشهاى مختلف تزريق هوا را با هم مقايسه نمودند[2]. بدین منظور هوادهی از طریق مخروطی چرخ توربین بههمراه هوادهی جانبی از طریق حلقه تخلیه و ایجاد تغییرات بر روی بازده توربین مطالعه شده است. همچنین کیفیت ترکیب شدن آب و هوا در هر یک از این روشها با یکدیگر مقایسه گردیدهاند. شکل 1 نشان دهنده طناب گردابه ایجاد شده در شرایط عملکرد بار جزئی است که حاصل کار آزمایشگاهی پاپیلون و همکارانش میباشد. نیشی و همکارانش نیز در سال 2002 روشی ترکیبی از تزریق هوا و به کارگیری باله در لوله مکش را معرفی کردند[3]. در این روش هوادهی از طریق سوراخهایی که بر روی سطح باله تعبیه شده در بازه عملکرد اسمی توربین که بالهها تاثیر گذار نیستند انجام می گیرد. بالهها دارای سطح مقطعی مثلثی شکل میباشند و نهایتا از تعداد چهار عدد باله در لوله مکش استفاده

شكل 1 تشكيل طناب گردابه براى شرايط عملكرد بار جزئي [3]

شده است. این روش هرچند در اصلاح طناب گردابه خوب عمل می کرد اما افت بازده تا 1 درصد را نیز به همراه داشت. رسیچا و همکارانش در سال 2006 برای کاهش طناب گردابه به وجود آمده در لوله مکش برای عملکرد در حالت بار جزئی از ایده تزریق جت آب از لبهی تاج چرخ توربین استفاده كردند[4]. آب فشار بالا مورد نياز براى تزريق از ورودى محفظه حلزوني گرفته میشود. به علت اینکه مستقیما مرکز ناپایداری جریان، متاثر میشود، تاثیر آن بهتر میباشد. این روش دارای این قابلیت است که با توجه به نقطه کاری تنظیم شود. در سال 2009 مگنلی با استفاده از نرمافزار سی اِف ایکس اقدام به شبیه سازی نوسانات فشار در توربین فرانسیس نمود [5]. هدف از این شبیه سازی پیشبینی دقیق رفتار دینامیک جریان بود. بدین منظور از مدلهای توربولانسی ال اِی اس 7 ، دی اِی اس 8 و اس اِی اس 9 در شبیهسازی استفاده کرد و با مقایسه نتایج به دست آمده با نتایج واقعی سعی در شناخت مدلی که بتواند بهترین پیشبینی را از رفتار داشته باشد شد. سانو بههمراه همکارانش در سال 2011 ایده ای جدید برای کاهش نوسانات پمپ- توربین ارائه كردند[6]. آنها با استفاده از ديناميك سيالات محاسباتي رفتار طناب گردابه را مورد تحلیل قرار داده و سپس اقدام به تغییر هندسه مخروطی چرخ توربین با ایجاد شیار بر روی مخروطی چرخ نمودند. سپس این روش به صورت عددی و آزمایشگاهی مورد بررسی قرار دادند. نتایج حاصل حاکی از کاهش افت راندمان توربین در مقایسه با سایر روشها و کاهش نوسانات فشار میباشد. در این مطالعه تحلیل عددی فقط بروی لوله مکش انجام شده است و اثرات ایجاد شیار در حالت یمیی بررسی نشده است.

در این مقاله، اثر ایجاد شیار بر روی مخروطی چرخ یک پمپ- توربین به منظور کاهش نوسانات و تغییرات فشار و به تبع آن کاهش ارتعاشات بصورت عددی بررسی شده است. برای این منظور یک نیروگاه پمپ- توربینی بومی به نام سیاهبیشه که در شمال کشور نصب شده است در نظر گرفته شده است. در این مقاله مجموعه چرخ و لوله مکش همزمان مدل شده و اثرات ایجاد شیار بر روی مخروطی چرخ نیروگاه سیاهبیشه با در نظر گرفتن تغییرات پارامترهایی مانند توزیع فشار استاتیک، توزیع سرعت مماسی و میزان گردابهها در دو حالت توربینی و یمیی تحلیل شده است.

⁷⁻ Large Eddy Simulation 8- Detached Eddy Simulation

⁹⁻ Scale Adaptive Simulation

¹⁻ Part Load

²⁻ Spiral vortex rope

³⁻ Cavitation

⁴⁻ Draft Tube 5- Dead water core

⁶⁻ Resonance

2- طراحي چرخ

گام اول در طراحی چرخ یک نیروگاه آبی، طراحی پرههای چرخ میباشد. برای طراحی پره از روش نگاشت همدیس¹ استفاده شده است. ابتدا در این روش شعاع ورودی و خروجی چرخ و نمودارهای هاب و شرود در نمای نصف النهاری 2 تعیین میشوند. گام بعد محاسبه زاویه پره در ورودی و خروجی با توجه به شرایط طراحی است. پس از مشخص شدن شعاعها و زاویهها، می توان در نمای پره به پره 3 اقدام به ترسیم نمودارهای هاب و شرود نمود. در این مرحله، با داشتن دو نما و طراحی به کمک رایانه 4 ، مدل سه بعدی را مى توان بدست آورد(شكل 2). قدم بعدى تعيين ضخامت يرهى طراحى شده می باشد. روابط موجود برای این منظور طوری به یره ضخامت می دهند که در کارکرد در جهت توربینی (عکس جهت کارکرد پمپی) در یک سوم پس از ورود جریان، پره به بیشینه ضخامت خود برسد[۷،8].

با انجام این کار برای سه خط جریان، شکل نهایی پره بدست می آید. قدم آخر تشکیل دیگر یرهها در اطراف خط مرکزی چرخ می باشد. تعداد یرهها برای یمپ - توربین معمولاً نه عدد می باشد (عددی بین تعداد پرههای معمول برای پمپ و تعداد پرههای معمول برای توربین). برای طرح موجود نیز همین عدد انتخاب شده است. نمای کلی چرخ در شکل 3 مشاهده میشود.

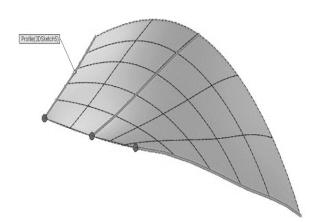
3- معادلات حاكم

معادلات مومنتوم برای جریان سیال تراکمناپذیر نیوتنی به صورت زیر مى باشند [9]:

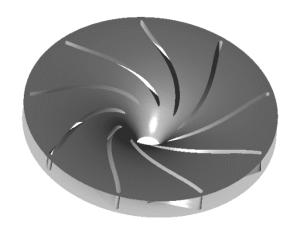
$$\rho \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} + B_i + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$
(1)

جریانهای آشفته دارای میدانهای سرعت با نوسان بالا میباشند و به همین دلیل شبیه سازی عددی مستقیم 5 آنها در مسائل عملی و مهندسی از نظر محاسباتی بسیار پرهزینه و پیچیده است. روش استفاده شده در این مقاله برای حل این مشکل، متوسط گیری رینولدز 6 از متغیرها میباشد. با این روش می توان معادلات حاکم را طوری بازنویسی کرد که نوسانات کوچک از آنها حذف گردیده و معادلات حاصل هزینهی محاسباتی کمتری داشته باشند. معادلات متوسط گیری شده ناویر - استوکس ⁷ برای جریان تراکمناپذیر سیال نيوتني به فرم ذيل تبديل مي شوند [9]:

$$\rho \left(\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \frac{\partial}{\partial x_j} \left(-\rho \overline{u_i' u_j'} \right)$$
(2)


آخرین عبارت در معادله شماره 2 تنش رینولدز 8 نامیده میشود. برای جریان تراکمناپذیر میتوان آن را با استفاده از فرضیه بوزینسک⁹ به گرادیان ميدان متوسط ارتباط داد[9]:

$$-\rho \overline{u_i' u_j'} = \mu_t \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \rho k \delta_{ij}$$
(3)



²⁻ Meridional plane

9- Boussinesq Hypothesis

شکل 2 پروفیل سه بعدی پره

شکل 3 نمای کلی از چرخ طراحی شده

بنابراین معادلات متوسط گیری شدهی ناویر- استوکس¹⁰ را میتوان به فرم زير نوشت[9]:

$$\rho\left(\frac{\partial u_{i}}{\partial t} + \frac{\partial(u_{i}u_{j})}{\partial x_{j}}\right) = -\frac{\partial}{\partial x_{i}}\left(p + \frac{2}{3}\rho k\right) + \frac{\partial}{\partial x_{j}}\left[\mu_{\text{eff}}\left(\frac{\partial u_{i}}{\partial x_{i}} + \frac{\partial u_{j}}{\partial x_{i}}\right)\right]$$
(4)

$$\mu_{\rm eff} = \mu + \mu_t(x, t) \tag{5}$$

مدلهای اغتشاشی که براساس فرضیه بوزینسک ارائه شدهاند، عبارت آخر معادله 5 را برای جریان سیال در تمام نقاط و در زمانهای مختلف محاسبه مي كنند.

حلگر نرمافزار سی اِف ایکس ¹¹ برای حل عددی معادلات از روش گسسته سازی حجم محدود ¹² استفاده می کند. از الگوریتم سیمیل ¹³ نیز برای کوپل میدان سرعت و فشار استفاده می شود. برای گسسته سازی معادلات نیز از روش یادبادسو¹⁴ مرتبه دوم استفاده شده است. در این مقاله از روش حل دقت بالا¹⁵ با بازه زمانی 0/02 ثانیه استفاده شده است. لازم به توضیح است که مقدار بازه زمانی با توجه به فرکانس دورانی چرخ پمپ- توربین منظور شده است. شرط مرزی برای این حل عبارتست از مولفههای بردار سرعت در

³⁻ Blade to blade

⁴⁻ Computer Aid Design (CAD)

¹⁻ Direct numerical simulation

⁷⁻ Reynolds-Averaged Navier-Stokes (RANS)

⁸⁻ Reynolds Stress

¹⁰⁻ Navier-Stokes

¹²⁻ Finite Volume

¹³⁻ SIMPLE

¹⁴⁻ Upwind 15- High Resolution

ورودی چرخ (براساس زاویه پرههای هادی و میزان دبی) و شرط فشار استاتیک در خروجی لوله مکش.

3-1- مدل اغتشاشی و تابع دیواره

مدل ویسکوزیتهی گردابهای ¹، اغتشاش ² را متشکل از گردابههای کوچکی در نظر می گیرد که همواره در حال شکل گیری و از بین رفتن هستند،، در این مدل فرض می شود که تنشهای رینولدز می توانند به گرادیانهای سرعت متوسط ویسکوزیتهی گردابه، مشابه با رابطهی بین تانسورهای تنش و میدان سرعت در جریان آرام نیوتنی، ارتباط داده شود.

در این مقاله از مدل اغتشاشی دو معادلهای انتقال تنش برشی 8 برای تعیین ویسکوزیته ی اغتشاش استفاده شده است. مدلهای دو معادلهای بسیار پیچیده تر از مدلهای تک معادلهای هستند.

مدل تلاطمی انتقال تنش برشی یک مدل دو معادلهای کِی- امگا/کِی- اپسیلون است که به صورت مختلط و به فرم کِی- امگا طراحی شده است. این مدل باعث بهبود عمدهای در محاسبات اختلاف فشار معکوس و در جریانهای لایه مرزی دارای جدایش میشود. همچنین مشکل حساسیت مدل کِی- امگا به شرایط سطح آزاد در این مدل مرتفع شده است. مدل انتقال تنش برشی در مقایسه با مدل اصلی کِی-اپسیلون حتی در عملکردهای پیچیده و مختلط نیز بسیار باثبات میباشد و در شبیهسازی توربوماشینها با توجه به پیچیدگی جریان در قسمت دوار بخوبی عمل می کند[10].

مدل کردن رفتار سیال در نزدیک دیواره به طور عمده اعتبار حلهای عددی را تحت تاثیر قرار میدهد، زیرا دیواره منبع اصلی اغتشاش میباشد و در نهایت این ناحیه کنار دیواره است که در آن متغیرهای حل شده گرادیانهای شدیدی را تجربه می کنند. بنابراین نمایش دقیق جریان کنار دیواره مشخص کنندهی موفقیت شبیهسازی جریانهای آشفته محدود به دیواره است. توابع دیواره در حقیقت نمودارهای تحلیلی جریان در لایه مرزی مجاور دیواره هستند که با استفاده از روشهای تحلیلی و از حل صریح معادلات جریان در نزدیکی دیواره حاصل شدهاند. از آنجا که این توابع به صورت تحلیلی بدست آمدهاند، خطاهای موجود در روشهای عددی در نمودارهای توابع دیواره وجود نخواهند داشت. بنابراین استفاده از توابع دیواره نیاز به اصلاح مدلهای اغتشاشی برای تطبیق با شرایط وجود دیواره را منتفی می کند. نکته ی جالب در استفاده از توابع دیواره آن است که چنانچه استفاده از توابع دیواره در نزدیکی دیواره مدنظر باشد، حتما باید توجه داشت که از شبکهبندی و گسستهسازی میدان جریان در نواحی نزدیک دیواره (نواحی که تابع دیواره مورد نظر در آنها معتبر میباشد) خودداری شود. در غیر این صورت به واسطه تداخل مفهومی میدان سرعت به دست آمده از توابع دیواره و میدان سرعت محاسبه شده از گسسته سازی میدان جریان در نواحی نزدیک دیواره، نتیجهی بدست آمده از مسئله بعضا غلط و غیر قابل توجیه خواهد بود. در نرمافزار سی اِف ایکس تابع دیواره با توجه به مدل اغتشاشی انتخاب می گردد. در این مقاله و با توجه به مدل اغتشاشی استفاده شده، از تابع ديواره مقياس پذير با استفاده از حالت تنظيمي اتوماتيک استفاده شده است. این نوع تنظیم باعث سازگاری بیشتر بین رفتار دیواره و y^{+} که منتج به افزایش و سرعت حل عددی می گردد [11].

4- شېكەبندى

4-1- ایجاد شبکه

برای ایجاد شبکه ابتدا فاصلهی اولین سلول تا دیواره جهت کنترل y^+ باید مشخص شود [11].

$$y^+ = \frac{u_\tau y}{v} \tag{6}$$

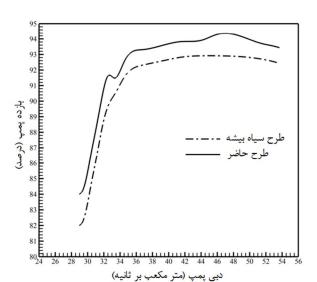
$$y_{wall} = 6 \left(\frac{V_{\text{ref}}}{v}\right)^{-\frac{7}{8}} \left(\frac{L_{\text{ref}}}{2}\right)^{\frac{1}{8}} y^{+}$$
 (7)

سرعت مرجع، سرعت محیطی متوسط پره در نوک پره و طول مرجع، قطر متوسط انتخاب شدهاند. با استفاده از این دادهها و این مهم که گسترهی صحت ۴/ در کدهای اغتشاشی روش انتقال تنش برشی با تابع دیواره، زیر 50 است[11]، فاصله اولين سلول شبكه از ديواره مشخص مىشود. لازم به توضیح است که پس از حل اولیه مجددا مقادیر y^+ چک میشوند. پس از تعیین فاصلهی اولین سلول از دیواره، 5 لایه مرزی با فاکتور رشد 1/5 در ادامه کا لایه کا اول به صورت شش وجهی 4 ایجاد کرده و بقیه کی حجم به صورت سازمان یافته و چهاروجهی⁵، با استفاده از نرم افزار تخصصی ایجاد شبکه برای توربینها⁶ شبکهبندی میشود. این شبکه سازمان یافته در شکل 7 نشان داده شده است. کیفیت شبکه ایجاد شده براساس معیار عدم تقارن 7 مورد بررسی قرار گرفت. براساس این معیار بیشترین مقدار عدم تقارن در شبکه 0/84 بود که نشان دهنده کیفیت خوب شبکه ایجاد شده میباشد. لازم به توضیح است که معیار عدم تقارن براساس پایهی انحراف حجم متوازی-الاضلاع عبارتست از حاصل تقسيم تفاضل اندازه سلول بهينه و اندازه سلول به اندازه سلول بهینه. مقدار قابل قبول برای این منظور کمتر از 9/0 مى باشد [12].

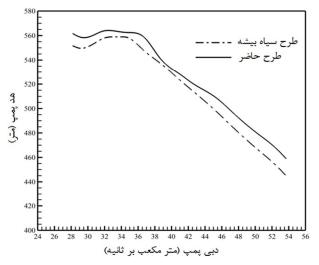
4-2- بررسى استقلال حل از شبكه

به منظور بررسی استقلال نتایج حل از شبکه، شش شبکه با فاصلهی متفاوت اولین لایه از دیواره و تعداد سلولهای مختلف مورد تحلیل و بررسی قرار گرفت. اندازهی المانهای محاسباتی و اندازهی قطعی شبکه طبق استاندارد مرجع [13] انتخاب شدهاند. عدم قطعیت این روش عددی 2 درصد است که عدد قابل قبولی مطابق با استاندارد مذکور میباشد. استقلال حل از شبکه نیز در شکل 5 نشان داده شده است. مطابق این شکل تغییرات راندمان در تعداد شبکه حدود 400000 سلول به حالت مجانبی میل پیدا می کند و بعد از آن میزان تغییرات اندک میباشد. در انتها مقایسهای بین نتایج کلی این طرح با طرح سیاه بیشه در نقطهی طراحی در دو حالت عملکرد پمپی و توربینی در جدول 1 و شکلهای 8-6 ارائه شده است. نیروگاه سیاه بیشه یک نیروگاه پمپ توربینی به ظرفیت 1000 مگاوات است، که در شمال کشور نصب شده است. این نیروگاه از چهار واحد توربین 250 مگاواتی با قطر چرخ 3/76 متر و دور نامی 500 دور بر دقیقه تشکیل شده است. این واحدها در ارتفاع 5/1843 متر از سطح دریا نصب شدهاند. مشخصات هیدرولیکی هر یک از این واحدها در حالت پمپی و توربینی در جدول 1 آمده است[14]. علت خطایی که بین نتایج عددی بدست آمده و نتایج واقعی مشاهده میشود، عدم در دسترس بودن هندسه کامل چرخ پمپ- توربین نیروگاه سیاه بیشه است. در واقع هندسه مدلسازی شده با استفاده از نمای در دسترس نصفالنهاری هندسه این نیروگاه طراحی شده است. در نظر نگرفتن تلفات مکانیکی، نشتی

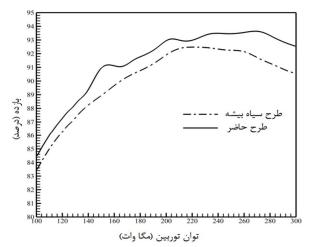
⁴⁻ Hexahedron


⁵⁻ Tetrahedron

⁶⁻ Turbo Grid 7- Skewness criteria


¹⁻ Eddy viscosity

²⁻ Turbulence


³⁻ Shear Stress Transport

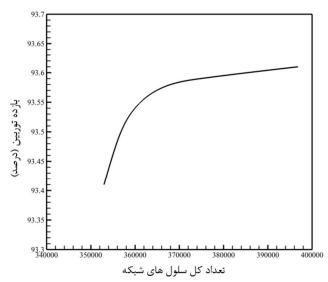
شکل ۶ مقایسهی بازده بر حسب دبی طراحی انجام شده با طرح سیاه بیشه (حالت پمپی) [۱۴]

شکل ۷ مقایسهی هد برحسب دبی طرح حاضر با طرح سیاه بیشه (حالت یمیی) [۱۴]

شکل ۸ مقایسهی بازده برحسب توان طرح حاضر با طرح سیاه بیشه (حالت توربینی) [۱۴]

شكل ۴ شبكه محاسباتي ايجاد شده

و تلفات دیسک در حل عددی نیز از دیگر دلایل این اختلاف می باشد، چرا که در حل عددی فقط تلفات هیدرولیکی منظور می شود. لازم به توضیح است که نحوه ی محاسبه مقادیر مربوط به بازده، هد و توان در نرم افزار سی اِف ایکس به صورت زیر می باشد [۱۲]:


$$Power = T_{AllBlades} \times \omega \tag{(A)}$$

$$Head = (P_{TotalIn} - P_{TotalOut})/\rho g \tag{9}$$

$$Efficiency = \frac{Power}{\rho gQ \times Head} \tag{$1 \cdot $}$$

۵- تحلیل عددی اثر شیار مخروطی بر عملکرد پمپ-توربین

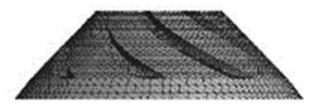
با استفاده از دینامیک سیالات محاسباتی میتوان رفتار طناب گردابه را مورد تحلیل قرار داد و برای بهینهسازی شیارها بر روی مخروطی چرخ نیز از آن

شکل ۵ بررسی استقلال حل از شبکه

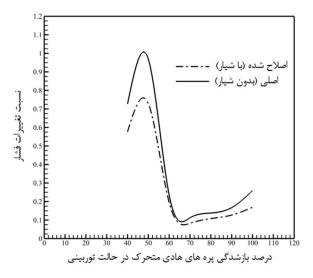
جدول ۱ مقایسهی طراحی انجام شده با طرح سیاه بیشه

بازده (%)	دبی (m³/s)	توان (MW)	هد (m)	طرح	حالت
98/9.	kk	777	214	حاضر	پمپی
۹ ۲/۸ ۰	44	۲۳۵	۵۰۵	سياەبيشە	پمپی
98/88	۵۹	771	444	حاضر	توربيني
97/1.	۵۹	78.	471	سياەبيشە	توربينى

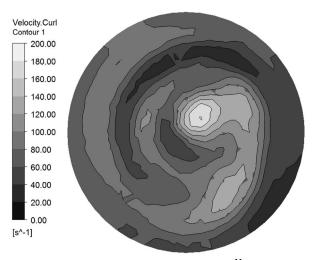
بهره برد. به منظور بهینهسازی چهار فاکتور طراحی مد نظر قرار گرفته است. این فاکتورها عبارتند از زاویه شیار، تعداد شیار، عمق شیار و شکل مقطع شیار. برای ایجاد شیار بر روی سطح مخروطی مدل سه بعدی چرخ طراحی شده، از روش طراحی آزمایش کمک گرفته شده است. شکل 9 سطح مخروطی را با نه عدد شیار نشان می دهد. در اعمال شرایط مرزی در حالت توربینی از شرط مرزی اندازه و راستای سرعت در دستگاه استوانهای در ورودی و فشار استاتیک در خروجی توربین استفاده شده است. برای اندازه و راستای سرعت در ورود، از دبی نقطهی طرح و سطح ورودی، مولفهی شعاعی محاسبه شده است. مولفهی مماسی نیز از مثلث سرعت ها به دست می آید. فشار ورودی در خروج چرخ نیز با فرض نصب چرخ در نقطهی مورد نظر طرح و فشار هیدرواستاتیک ستون آب پایین دست (53 متر آب) محاسبه و اعمال شده است. در حالت پمپی نیز در ورودی شرط فشار کل در دستگاه ثابت، که همان مجموع فشار استاتیک در خروجی توربین به اضافه ی فشار دینامیک ناشی از چرخش پره است، و در خروجی نیز شرط دبی را اعمال می کنیم. حل در حالت پایا صورت گرفته و معیار همگرایی براساس کنترل مانده کلی² است که نرمال سازی شده است و تا رسیدن باقی $^{-4}$ برای همگرایی ادامه پیدا کرده است.


8 لازم به توضیح است که رایانه استفاده شده جهت حل عددی دارای هسته پردازنده و 8 گیگابایت حافظه موقت می باشد. همچنین مدت زمان لازم برای هر بار حل عددی حدود 18 ساعت بوده است.

6- نتايج


شکل 10 نسبت تغییرات فشار برای نقطهای در ابتدای لوله مکش در زیر چرخ را برحسب تغییر درصد بازشدگی پرههای هادی متحرک در حالت عملکرد توربینی نمایش میدهد. لازم به توضیح است که محور عمودی این نمودار با بزرگترین مقدار فشار نرمال سازی شده است. کاهش تغییرات فشار در حالت اصلاح شده مخصوصاً در دو وضعیت بازشدگی پرهها، کمتر از 60 % و بیشتر از 90% نقطه طراحی، به خوبی قابل مشاهده میباشد.

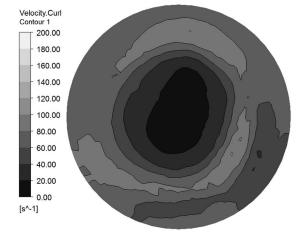
برای حالت توربینی و شرایط عملکردی 75 درصد دبی طراحی، به مقایسه دو حالت بدون شیار ((صلی) و با شیار ((صلاح شده) پرداخته میشود. شکلهای 11 و 12 کانتور گردابه 8 برای مقطعی در زیر چرخ و ابتدای لوله مکش را نشان میدهند. همانطور که در این شکلها مشخص است، در حالت اصلاح شده گردابههای کمتری نسبت به حالت اصلی تشکیل میشوند. مقایسه دو مقدار میانگین گردابهها در سطح نشان داده شده مؤید کاهش 31 درصدی در حالت اصلاح شده نسبت به حالت اصلی را نشان میدهد. از دیگر موارد حائز اهمیت در حالت اصلاح شده، تضعیف گردابه در مرکز لوله مکش و انتقال آن به نواحی نزدیک به دیواره میباشد که این موضوع سبب کاهش لایههای برشی و به تبع آن کاهش کاویتاسیون و نوسانات فشار خواهد شد.


شکلهای 13 و 14 الگوی جریان در منطقه نزدیک زیر مخروطی چرخ را از نمای پایین چرخ نشان میدهند. مطابق این شکلها میزان سرعت و تغییرات آن در حالت شیاردار کمتر از حالت بدون شیار میباشد. با توجه به یکسان بودن سرعت محوری (نصف النهاری) می توان نتیجه گرفت که میزان سرعت مماسی نیز در حالت شیاردار کاهش یافته است که این امر به فرونشاندن گردابه زیر چرخ کمک می کند. همچنین افزایش سرعت در زیر

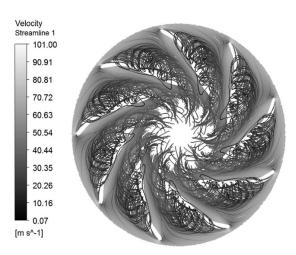
شکل 9 ایجاد شیار بر روی مخروطی چرخ

شکل 10 مقایسه تغییرات فشار در حالت اصلی و اصلاح شده

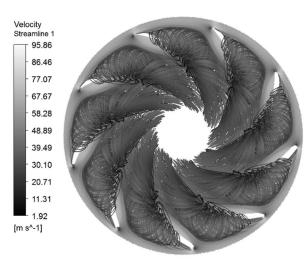
شکل 11 کانتور گردابه ابتدای لوله مکش در حالت اصلی


مخروطی چرخ در حالت شیاردار باعث تضعیف هسته مرده آب در زیر مخروطی چرخ می شود.

شکلهای 15 و 16 سطوح همفشار ⁴ سهبعدی که پس از چرخ پمپتوربین و در ابتدای لوله مکش تشکیل شدهاند را نشان میدهد. با مقایسه این
دو شکل میتوان شاهد کاهش اندازه این سطوح کم فشار در حالت شیاردار
نسبت به حالت اولیه بود. همچنین حالت مارپیچی شکل در نمونه اولیه به
گسترشی مستقیم در امتداد محور چرخ توربین در نمونه اصلاح شده تغییر
شکل داده است.


¹⁻ Design Of Experiment (DOE)

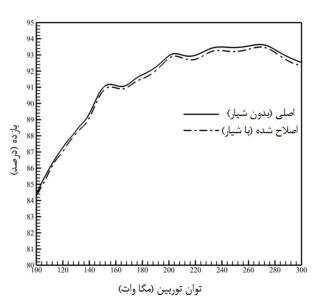
²⁻ Global Residual


³⁻ Vorticity

شکل 12 کانتور گردابه ابتدای لوله مکش در حالت اصلاح شده

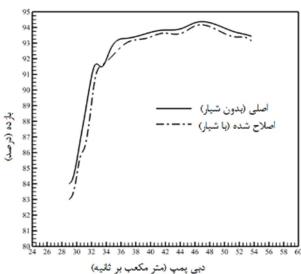
شكل 13 الگوى جريان حول چرخ براى حالت اصلى

شكل 14 الگوى جريان حول چرخ براى حالت اصلاح شده

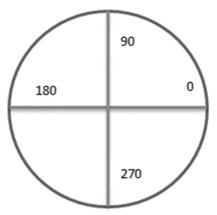

اثر ایجاد شیار بر روی بازده، مهمترین مشخصهای است که باید کنترل شود. در شکل 17 منحنیهای بازده عملکرد در حالت توربینی با هم مقایسه شده است. همانطور که در شکل مشاهده میشود، بازده حالت توربینی در هر دو حالت تقریباً یکسان است. بیش ترین میزان اختلاف بین دو نمودار 3/3 درصد است که این عدد در مقایسه با میزان افت بازده سایر روشها به مراتب

شکل 15 سطوح همفشار سه بعدی در حالت اصلی

شکل 16 سطوح همفشار سه بعدی در حالت اصلاح شده

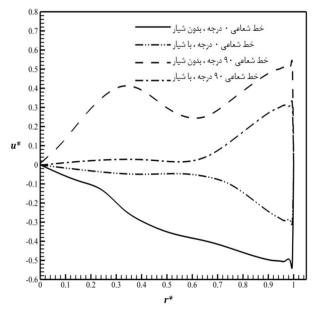

شکل 17 مقایسه بازده در عملکرد توربینی بین حالت اصلی و اصلاح شده

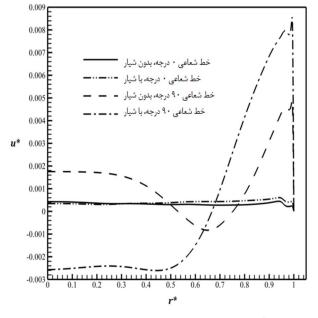
کوچکتر میباشد. عملکرد در حالت پمپی نیز در شکل 18 مقایسه انجام شده است. این قیاس نیز حاکی از حداکثر افت معادل 0/4 درصد میباشد. این اعداد نشاندهنده ی برتری این روش در مقایسه با سایر روشهای موجود است.


اکنون به بررسی اثر ایجاد شیار بر رفتار سیال در مقاطع زیرین چرخ پرداخته میشود. برای این منظور مقطعی در حدود 25 درصد ارتفاع مخروطی لوله مکش در زیر چرخ انتخاب شده است. رفتار سیال با توجه به تغییرات مولفه مماسی سرعت در این صفحه مورد مطالعه قرار گرفته است. تحلیلها در هر دو حالت عملکرد پمپی و توربینی انجام شده است.

جهت استخراج مولفههای مربوط به سرعتهای مماسی، دو خط شعاعی در این صفحه با زوایای 0 و 90 درجه در نظر گرفته شده که بطور شماتیک در شکل 19 مشخص شده است. 20 نمودار سرعت مماسی سیال در شعاعهای مختلف در صفحه 25 درصد ارتفاع مخروطی لوله مکش در حالت عملکرد توربینی را نشان می دهد. محور عمودی این نمودار سرعت مماسی چرخ در مقطع یاد شده و محور افقی فاصله از مرکز لوله است. محور عمودی نسبت به سرعت محیطی بیشینه ی حاصله از چرخ در این مقطع (حاصل ضرب شعاع این مقطع در سرعت دورانی چرخ) و محور افقی نیز با شعاع مذکور بی بعد شده اند.

همان گونه که از 20 مشخص است در هر دو خط شعاعی 0 و 90 درجه، ایجاد شیار باعث کاهش میزان سرعت مماسی شده است. افزون بر این، اندازه سرعت مماسی نیز کاهش یافته است که این امر به بهبود بازده چرخ بواسطه کاهش میزان تلفات در مقایسه با سایر روشها، مانند تزریق هوا


شکل 18 مقایسه بازده در عملکرد پمپی بین حالت اصلی و اصلاح شده


شکل 19 شماتیک نحوهی برداشت داده در مقطع مورد نظر

و آب می شود. تمامی این موارد بر اثر مثبت ایجاد شیار در حالت عملکرد توربینی صحه می گذارند.

شکل 21 نمودار سرعت مماسی سیال در فواصل مختلف از مرکز لوله مکش در حالت عملکرد پمپی را نشان میدهد. محورهای عمودی و افقی مانند 20 بیبعد شدهاند و نحوهی استخراج نتایج مشابه با عملکرد توربینی است. همان گونه که از شکل 21 مشخص است اندازهی سرعت مماسی در حالت پمپی در دو حالت شیاردار و بدون شیار خیلی کمتر از حالت توربینی است. دلیل این موضوع یکنواخت شدن سرعت قبل از ورودی چرخ در لوله مکش میباشد در حالی که در حالت توربینی مقدار سرعت مماسی بواسطه خروج از چرخ قابل ملاحظه است. مطابق شکل 21 شیار تا حدودی سبب خروج از چرخ قابل ملاحظه است. مطابق شده که با توجه به تغییر جهت

شکل 20 تغییرات سرعت مماسی در حالت عملکرد توربینی در دو خط شعاعی در مقطع مورد نظر (قیاس حالت شیاردار و بدون شیار)

شکل 21 تغییرات سرعت مماسی در حالت عملکرد پمپی در دو خط شعاعی در مقطع مورد نظر (قیاس حالت شیاردار و بدون شیار)

مكان (m) مكان (m) у علايم يوناني ویسکوزیته دینامیکی سیال (kgm-1 s-1) ویسکوزیته سینماتیک سیال (m²s⁻¹) چگالی (kgm⁻³) ρ بالانويسها اصلاح شده متوسط زيرنويسها موثر eff ref مرجع ديواره wall اغتشاش

9- مراجع

- [1] V. Turkmenoglu, The vortex effect of Francis turbine in electric power generation, *Turkish Journal of Electrical Engineering & Computer Sciences*, Vol. 21, pp. 26-37, 2013.
- [2] B. Papillon, M. Sabourin, M. Couston, C. Deschenes, Methods for Air Admission in Hydroturbines, in *The XXIst IAHR Symposium on Hydraulic Machinery and Systems Conference*, Lausanne, Switzerland, pp. 6-11, 2002.
- [3] M. Nishi, K. Yoshida, M. Fujii, K. Miyamoto, A Study on Hybrid Control of Draft Tube Surge, in *The XXIst IAHR Symposium on Hydraulic Machinery* and Systems Conference, Lausanne, Switzerland, pp. 35-39, 2002.
- [4] R. Susan-Resiga, T. C. Vu, S. Muntean, G. D. Ciocan, B. Nennemann, Jet Control of the Draft Tube Vortex Rope in Francis Turbines at Partial Discharge, in 23rd IAHR Symposium Conference, Yokohama, Japan, pp. 67-80, 2006.
- [5] M. V. Magnoli, Numerical Simulation of Prussure oscillations in Farncis Turbine Runners, in JASS Numerical Simulation of Turbomachinary, Germany, pp. 32-50, 2009
- [6] T. Sano, M. Ookawa, H. Watanabe, N. Okamoto, H. Yano, N. Fukuda, M. Maekawa, K. Miyagawa, A New Methodology For Suppressing Pressure Pulsation In A Draft Tube By Grooved Runner Cone, in ASME-JSME-KSME Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan, pp. 41-48, 2011.
- [7] S. Hosseini, A. Riasi, A. Nourbakhsh, Designing and Numerical Simulation of a Pump-Turbine Runner, in Fuelling the Future: advances in science and technologies for energy generation, transmission and storage, pp. 389-395, Florida: BrownWalker Press, 2012.
- [8] S. Hosseini, Design Simulation and parametric Investigation of a Pump-Turbine Runner, M. Sc. Thesis, Deprtment of Mechanical Engineering, University of Tehran, Tehran, 2012 (In Persian).
- [9] J. C. Tannehil, D. A. Anderson, R. H. Pletcher, COMPUTATIONAL FLUID MECHANICS AND HEAT TRANSFER, Second Edition, pp. 249-280, Washington DC, Taylor & Farncis, 1997.
- [10] A. Bozorgi, Small axial turbine blade optimization with very little loss in height, M. Sc. Thesis, Deprtment of Mechanical Engineering, University of Tehran, Tehran, 2011 (In Persian).
- [11] M. S. Salim, S. C. Cheah, Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows, in *International Multi Conference of Engineers and Computer Scientists*, Hong Kong, pp. 241-246, 2009.
- [12] ANSYS CFX-Solver Theory Guide, ANSYS CFX Release 11.0, 2012
- [13] ASME, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, Uncertainty of an Experimental Result, American Society of Mechanical Engineers, pp. 30-39, 2009
- [14] Priminary Model Test Report for SiahBishe Pumped Storage Project, Farab Co., 2005

چرخش پمپ در مقایسه با حالت توربینی این موضوع قابل پیش بینی بود. لذا با توجه به سرعت مماسی کم در حالت عملکرد پمپی، چه در طرح مخروطی دارای شیار و چه در طرح مخروطی بدون شیار، میتوان چنین نتیجه گرفت که از این جهت ایجاد شیار بر روی مخروطی چرخ پمپ توربین، اثر چندانی بر عملکرد در حالت پمپی ندارد.

7- نتيجه گيري

تحلیل و بررسیهای عددی انجام شده در این مقاله گواه بر این است که ایجاد شیار بر روی مخروطی هاب چرخ پمپ- توربین، روش موفق و موثری برای کاهش شدت طناب گردابهای میباشد. دیگر نتایج بدست آمده عبارتند از:

بیش ترین میزان تغییرات فشار مربوط به بازشدگی پرههای هادی در حالت کمتر از 60 درصد نقطه طراحی است. با ایجاد شیار تا حد زیادی از میزان این تغییرات کاسته میشود. همچنین ایجاد شیار باعث افزایش سرعت در زیر مخروطی و در نتیجه تضعیف هسته مرده آب و کاهش قدرت لایههای برشی میشود.

شیارهای مارپیچ مخروطی چرخ باعث کاهش میزان سرعت مماسی و به تبع آن کاهش تلفات و افزایش راندمان میشود. این روش بر خلاف بیشتر روشهایی که پیش از این به منظور کاستن از نوسانات فشار به کار گرفته میشدند، تاثیر کمی بر عملکرد داشته و افت اندکی در بازده ایجاد می کند. بازده پمپ-توربین با افزودن شیار به مخروطی (در هر دو حالت عملکرد پمپی و توربینی) تقریبا بدون تغییر باقی میماند. بیشترین میزان افت بازده در عملکرد توربینی 3/3 درصد و در عملکرد پمپی ۵/4 درصد می باشد.

در حالت پمپی اندازه سرعت مماسی نسبت به حالت توربینی بسیار کمتر میباشد و ایجاد شیار تا حدی باعث افزایش سرعت مماسی میشود ولی با توج به اندازه کم این مولفه تاثیر زیادی بر عملکرد ندارد. این مورد می تواند به علت یکنواخت شدن سرعت قبل از ورودی چرخ در لوله مکش باشد درحالی که در حالت توربینی مقدار سرعت مماسی بواسطه خروج از چرخ قابل ملاحظه است.

برای کارهای آینده پیشنهاد می شود که این روش با روشهایی مانند تزریق هوا و آب از نقطه نظر اصلاح رفتار جریان در لوله مکش تحلیل و مطالعه شود.

8- فهرست علائم

B نيروى حجمى (kgm⁻²s⁻²) فشار (kgm⁻¹s⁻²) p

Pr عدد پرانتل

r* شعاع بی بعد

t زمان (s)

سرعت سيال (ms⁻¹) u

سرعت متوسط سیال (ms-1)

u سرعت مماسی بی بعد