مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مطالعه عددی پخش و نشست ذرات کروی با اندازه نانو و میکرو در جریان گاز تراکم‌ناپذیر آشفته در داخل یک کانال دارای زبری مصنوعی

نویسندگان
1 دانشگاه سمنان
2 استادیار هیئت علمی دانشکده مکانیک دانشگاه سمنان
چکیده
پدیده پخش و نشست ذرات نانو و میکرو در جریان آشفته در چند دهه گذشته مورد توجه قرار گرفته است. در این مقاله، پخش و نشست ذرات در جریان آشفته تراکم‏ناپذیر دوفازی گاز- ذره در داخل کانال دوبعدی دارای زبری مصنوعی (برجستگی های منظم) مستطیلی با استفاده از روش اویلری- لاگرانژی مورد بررسی قرار گرفته است. جریان فاز گاز با استفاده از مدل آشفتگی RSM با تابع بهبودیافته دیواره شبیه سازی شده است. اعتبارشبیه سازی جریان فاز گاز با مقایسه نتایج آن با داده های تجربی موجود برای جریان آشفته توسعه یافته در یک کانال نامتقارن بررسی شده است. ردیابی ذرات در فاز گسسته با استفاده از مدل لاگرانژی انجام شده است. معادله لاگرانژی حرکت ذره شامل نیروی درگ، نیروی گرانش، نیروی بالابر سافمن و نیروی براونی می‏باشد. اعتبارسنجی شبیه سازی حرکت ذرات با مقایسه بین نتایج حاضر با معادلات تجربی و نتایج معتبر قبلی برای حرکت ذرات داخل یک کانال دوبعدی صاف انجام شده است. نتایج شبیه سازی فاز گاز نشان می دهد که با افزایش ارتفاع زبری مصنوعی، گردابه های ایجاد شده در فضای بین دو زبری بزرگتر می شود. نتایج فاز ذرات نشان می دهد که مقادیر رسوب در کانال های دارای زبری مصنوعی، تابع دو عامل نیروی گرانش و الگوی جریان گاز در فضای بین دو زبری می باشد. مقادیر رسوب برای ذرات سبک، بیش تر تابع الگوی جریان در فضای بین دو زبری می باشد و با بزرگتر شدن ذرات، اثر الگوی جریان کمتر و اثر نیروی گرانش بیش تر می شود.
کلیدواژه‌ها

عنوان مقاله English

Numerical study on dispersion and deposition of nano and micro spherical particles in turbulent incompressible gas flow inside a channel with artificial roughness

نویسندگان English

Yousef Hemmati 1
Roohollah Rafee 2
چکیده English

Phenomenon of dispersion and deposition of nano- and micro-particles in turbulent flows been focused in the past decades. In this paper, particle dispersion and deposition in gas-particle two-phase turbulent flow inside a two-dimensional channel with rectangular artificial roughness is studied using an Eulerian–Lagrangian method. The RSM turbulence model with enhanced wall treatment was used to simulate the anisotropic turbulent gas phase flow. The gas phase flow predictions were validated by comparing the results with available experimental data for a fully developed asymmetric turbulent channel flow. In discrete phase, Lagrangian approach was applied for particle tracking. The Lagrangian equation of particle motion includes drag, gravity, Saffman lift, and Brownian forces. The particle phase simulation results were validated by comparing the present work with available equations and valid data for a gas particles turbulent flow inside a two-dimensional smooth channel. The gas phase simulation results show that by increasing the artificial roughness height, a recirculation region which is created in the space between two ribs, becomes larger. The particle phase results show that the rate of deposition in the channel with artificial roughness is a function of gravity force and flow pattern in the space between two ribs. The rate of deposition for small particle is affected significantly by gas flow pattern in the space between two ribs. However for large particles the gravity force is more dominant.

کلیدواژه‌ها English

two-phase flow
Artificial Roughness
Particle deposition
Discrete Phase Model