

ماهنامه علمى پژوهشى

مهندسی مکانیک مدرس

بررسی تجربی تاثیر پارامترهای ورودی بر روی نرخ فرسایش و تنش پسماند در فرایند قالبگیری ماهیچه

محمد رضا شبگرد^{1*}، محمد جداری سقایی

- 1- دانشیار، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز
- 2 دانش آموخته مقطع كارشناسي ارشد، مهندسي مكانيك، دانشگاه تبريز، تبريز
- * تبریز، صندوق پستی 51664-16471، mrshabgard@tabrizu.ac.ir

کیدہ

اطلاعات مقاله

مقاله پژوهشی کامل

در این مقاله تاثیر زاویه برخورد و فشار پاشش ماسه بر روی نرخ فرسایش و تنش پسماند ناشی از فرایند قالبگیری ماهیچهای در چدنهای خاکستری (GCl)، داکتیل پرلیتی(PDl) و داکتیل آستمپر شده (ADl)به صورت تجربی مورد بررسی قرار گرفته است. برای این منظور، جنس قطعه کار، زاویه برخورد و فشار پاشش ماسه به عنوان پارامترهای ورودی و نرخ فرسایش و تنش پسماند به عنوان پارامترهای خروجی انتخاب شده اند. نتایج آزمایشها نشان دادند که با تغییر زاویه برخورد ذرات ساینده نرخ فرسایش مواد مذکور به شدت تغییر می کند، بطوریکه در زوایای کم، (30-15 درجه) چدن PDl مقاومت فرسایشی بهتری از خود نشان می دهند. تصاویر میکروسکوپ الکترونی (SEM) نشان دادند، علت اصلی بالا بودن میزان سایش در چدن خاکستری وجود گرافیتهای تیغهای شکل می باشد که به عنوان محلهای تمرکز تنش عمل نموده و بدین طریق در فرایند پاشش ماسه با ایجاد و رشد ترکها موجب زیاد شدن میزان سایش در چدن خاکستری نسبت به چدنهای ADl و PDl می شوند. همچنین نتایج مربوط به اندازه گیری و ارزیابی تجربی میزان تنش پسماند ایجاد شده در سطح نمونهها بعد از عملیات پاشش ماسه نشان می دهد، تنش پسماند فشاری ناشی از عملیات قالبگیری ماسه در چدن خاکستری به علت ایجاد ترکهای ریز سطحی در قطعات کمترین و در چدن ADl به علت سختی بالا بیشترین مقدار می باشد. همچنین نتایج نشان دادند، که با افزایش می بابد.

دریافت: 29 اسفند 1393 پذیرش: 05 تیر 1394 ارائه در سایت: 22 تیر 1394 فرسایش فرسایش چدن داکتیل پرلیتی چدن داکتیل آستمپر شده تنش پسماند

Experimental investigation of input parameters on erosion rate and residual stress in core molding process

Mohammad Reza Shabgard*, Mohammad Jedari saghaie

Department of Mechanical Engineering, Tabriz University, Tabriz, Iran * P.O.B. 51664-16471 Tabriz, Iran, mrshabgard@tabrizu.ac.ir

ARTICLE INFORMATION

ABSTRACT
In the present

Original Research Paper Received 20 March 2015 Accepted 26 June 2015 Available Online 13 July 2015

Keywords: Erosion Pearlitic ductile iron Austempered ductile iron Residual stress

In the present study, in order to investigate the effect of impact angle and sand jet pressure on the erosion rate and residual stress in sand molding operation, the experiments are performed using gray cast iron (GCI), pearlitic ductile iron (PDI) and austempered ductile iron (ADI) as workpiece materials. To fulfill this objective, experimental tests are conducted in full factorial design with workpiece material, impact angle and jet pressure as input and erosive wear rate and residual stress as output parameters. According to the results, variation of impact angle of erosive particles intensively affects the erosion rate of materials in a way which, among the experiments that are carried out in lower impact angles (15 to 30°), ADI cast iron shows the maximum erosive strength; however, as the impact angle shifts to higher values (75 to 90°), PDI cast iron becomes more resistant against erosion. It can also be noted from the SEM images that in sand shooting process, the presence of flake graphite in gray cast iron causes more formed and grown cracks which significantly intensifies its erosion rate relative to ADI and PDI cast irons. Additionally, comparative analysis of results revealed that formation of surface micro cracks in gray cast iron material causes less induced compression residual stresses relative to ADI cast iron whose great stiffness leads to higher magnitudes of compression residual stress in sand molding operation. In addition, it is observed that regardless of employed material, increase of erosive particles shooting pressure increases erosion rate of the workpiece.

برخورد ذرات ساینده میباشد. در این صنایع به منظور کاهش هزینهها، جنس قالبهای مذکور را اغلب از چدن خاکستری انتخاب مینمایند. بالا بودن میزان سایش چدن خاکستری در فرایند پاشش ماسه ایجاب مینماید از ماده

1- مقدمه

یکی از مهمترین مشکلات صنایع ریخته گری مخصوصاً در فرایند قالبگیری ماهیچههای ماسهای بحث سایش و خوردگی سطوح قالبهای فلزی به علت

مقاوم به سایش بهتری در ساخت قالبهای ریخته گری استفاده شود. در این میان چدنهای ADI و PDI به علت قابلیت ریخته گری بالا و ماشین کاری مناسب یکی از گزینههای مناسب جهت جایگزینی با چدن خاکستری در ساخت قالبهای ماهیچه سازی در صنایع ریخته گری می باشد. فرسایش یکی از گسترده ترین شکل سایش بوده که در اثر از دست دادن تدریجی مواد سطح قطعه کار، به علت برخورد ذرات سایندهای که توسط یک سیال حمل می شوند، به وجود می آید [1]. در سایش فرسایشی با تغییر زاویه برخورد مکانیزم برداشت ماده تغییر می کند.

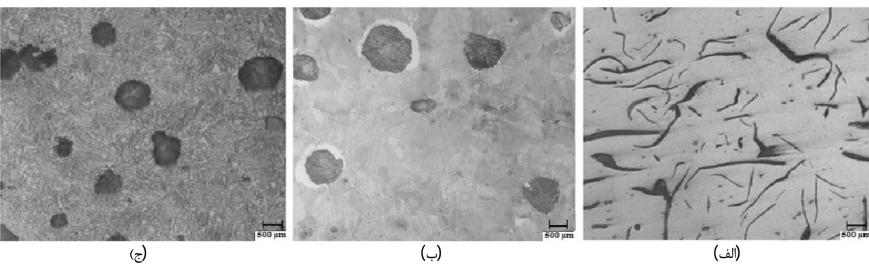
در زوایای برخورد زیاد (90-60 درجه)، مکانیزم اصلی برداشت ماده ناشی از تشکیل و اشاعه میکرو ترکهاست، در حالی که در زوایای برخورد کم (30-15 درجه) مکانیزم برداشت ماده توسط پدیدههای برش و شخم زنی می باشد [2]. چانگ و همکارانش [3] تاثیر دمای آستنیته کردن چدن ADI را بر روی رفتار فرسایشی آن مورد بررسی قرار دادند. آنها مشاهده کردند که در زوایای برخورد بالا، نمونههایی که در دمای بالاتر آستنیته شده بودند، به علت شکلپذیری یا داکتیلیته بهتر، مقاومت فرسایشی بهتری از خود نشان میدهند. ناراسیما و همکارانش [4] تاثیر میزان منگنز را در رفتار فرسایشی چدن ADI مورد بررسی قرار داده و نشان دادند که نمونههای حاوی 2% منگنز مقاومت بهتری را در مقابل فرسایش از خود نشان میدهند. هانگ و همكارانش [5] به مطالعه تاثير ميزان سيلسيم و نوع عمليات حرارتي در فرسایش چدن ADI و چدن PDI پرداختند و نشان دادند که در نمونههای چدن ADI که کمتر از 30 دقیقه آستمپر شده بودند، کاهش زمان آستمیرینگ باعث ایجاد منحنی نرخ فرسایش با 2 پیک در زوایای 30 و 75 درجه میشود. آنها همچنین نشان دادند که در زمانهای آستمپرینگ بیشتر از 30 دقیقه به علت کاهش فاز آستنیت باقی مانده و افزایش فاز کاربید منحنی نرخ فرسایش دارای یک پیک میباشد و هر چه قدر زمان آستمپرینگ بیشتر باشد به علت تردشدگی زاویه بیشترین نرخ فرسایش از 30 به 45 درجه تغییر میکند. آرولا و همکارانش [6] به بررسی تنش پسماند و بافت سطحی ایجاد شده در فرایند واترجت و واترجت با پودر ساینده پرداختند. آن-ها نشان دادند که در فرایند واترجت با افزایش فشار جت میزان تنش پسماند بیشتر شده در حالی که در فرایند واترجت با پودر ساینده با افزایش اندازه

ذرات ساینده و فشار جت میزان تنش پسماند کاهش می یابد.

در این پژوهش جهت انتخاب صحیح جنس قطعاتی که در فرایند قالب-گیری ماهیچههای ماسهای در معرض فرسایش قرار می گیرند، تاثیر زاویه برخورد و فشار پاشش ذرات ساینده بر روی رفتار فرسایشی و میزان تنش پسماند ناشی از عوامل فوق، در چدنهای PDI ، ADI و GCl به صورت مقایسهای - تجربی مورد بررسی قرار گرفته است.

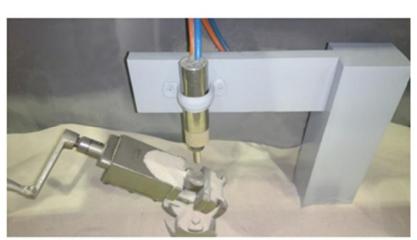
2- مباني و روشها

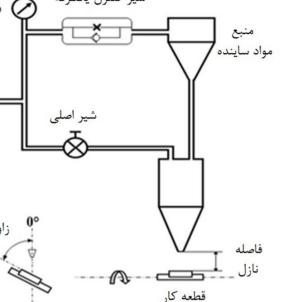
جنس قطعات مورد استفاده در این مطالعه، چدنهای خاکستری با زمینه فریتی، PDI و ADI میباشد، که آنالیز شیمیایی هر یک از نمونهها به روش کوانتومتری بدست آمده و در جدول 1 آورده شده است.


برای تهیه چدن اPDI، چدن داکتیل ریخته گری شده در ماسه، به مدت 1 ساعت در دمای 930 درجه حرارت داده شد و سپس توسط هوای فشرده خنک گردید. همچنین جهت تهیه چدن ADI چدن داکتیل ریخته گری شده ابتدا در دمای 880 به مدت 45 دقیقه آستنیته شده و سپس عملیات آستمپرینگ به مدت 90 دقیقه در دمای 300 درجه بر روی آن انجام گرفت [5]. بعد از انجام عملیات حرارتی، جهت اطمینان از درستی میکروساختار حاصله، سطح مقطع قطعات توسط میکروسکوپ نوری مورد بررسی قرار گرفته و بدین طریق جهت مطالعات بعدی مورد تایید قرار گرفتند (شکل 1).

برای انجام آزمایشهای مربوط به پاشش ماسه، ابتدا نمونههای استوانهای شکل، به قطر 35 میلیمتر و ارتفاع 7 میلیمتر توسط ماشین تراش ماشینکاری شدند. جهت شبیهسازی فرایند قالبگیری ماهیچه ماسهای و مطالعه تجربی تاثیر جنس قطعه کار، زاویه برخورد و فشار پاشش ماسه بر روی رفتار فرسایشی آنها، دستگاه جت ذرات ساینده با مشخصات نشان داده شده در شکل 2 ساخته شد.

به منظور بررسی بهتر نتایج، آزمایشها به صورت عاملی کامل (جنس قطعه کار در 3 سطح، زاویه برخورد در 6 سطح و فشار پاشش در 2 سطح) طراحی شدند. جهت اطمینان از درستی نتایج، هر آزمایش 2 بار به صورت تصادفی تکرار گردید. جدول 2 پارامترهای ثابت و متغیر آزمایشها، را نشان می دهد.


جدول 1 آنالیز شیمیایی نمونهها بر حسب درصد وزنی عناصر


С	Si	Mn	Р	S	Cr	Ni	W	Со	Мо	Cu	عناصر
3/1	2/78	0/35	0/06	0/14	0/14	0/13	0/02	0/008	0/02	0/25	چدن خاکستری
3/54	2/58	0/22	0/02	0/01	0/06	0/05	0/004	0/006	0/01	0/30	چدن داکتیل پرلیتی
3/44	3/09	0/24	0/03	0/01	0/05	0/51	0/02	0/006	0/1	0/18	چدن داکتیل آستمپر شده

شکل 1 میکروساختار مربوط به نمونههای مورد آزمایش قبل از برخورد ذرات ساینده ، (الف) میکروساختار چدن خاکستری (GCl)، (ب) میکروساختار چدن داکتیل پرلیتی (PDl)، (ج) میکروساختار مربوط به چدن داکتیل آستمپر شده (ADl)

رگلاتور

شکل 2 شماتیک و تصویر دستگاه شن پاش ماسه ساخته شده، (الف)تصویر دستگاه پاشش ماسه، (ب) شماتیک دستگاه پاشش ماسه

جدول 2 پارامترهای ثابت و متغیر در انجام آزمایشها

(الف)

مقدار	پارامتر
1	وزن ذرات ساینده در هر تست (kg)
15 ± 1	فاصله نازل تا قطعه <i>ک</i> ار (mm)
سيليكون كاربايد	جنس ذرات ساينده
4/5	سرعت ذرات ساینده (متر بر ثانیه)
165	متوسط اندازه ذرات (میکرومتر)
90 - 75 - 60 -45 - 30 - 15	زاویه برخورد ذرات ساینده (درجه)
4/5 - 6	فشار پاشش (bar)
چدن خاکستری	
چدن داکتیل پرلیتی	جنس قطعات
چدن داکتیل آستمپرشده	

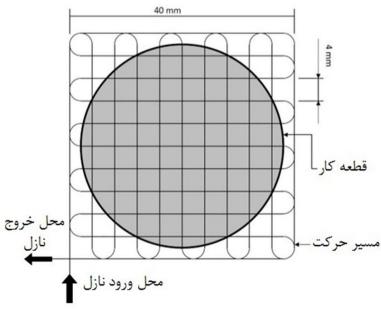
جدول 3 مشخصات دستگاه اندازه گیری تنش پسماند به روش پراش اشعه ایکس و شرایط آزمایش

مقدار	پارامتر			
1/54060	طول موج پرتو $Klpha_1$ (آنگستروم)			
1/54439	(آنگستروم) طول موج پرتو $m{K}lpha_2$			
10 × 10 ميلى متر	پهنای پرتو تابیده			
پيوسته	نحوه تابش پرتو اشعه ایکس			
100 ثانیه	زمان هر مرحله			
0/02	اندازه هر مرحله (درجه)			
120/2	زاویه شروع آنالیز [$ heta$			
128/2	زاویه پایان آنالیز [$ heta$			

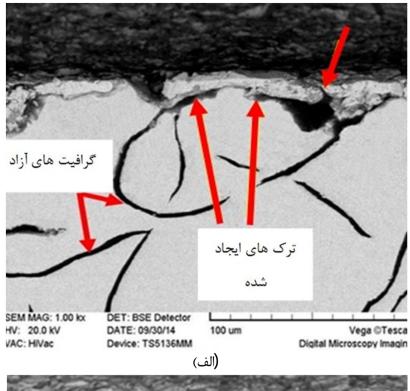
جهت تعیین نرخ فرسایش نسبی، نمونهها قبل و بعد از انجام آزمایشها با ترازوی دیجیتالی به دقت 0/0001 گرم توزین شدند و جهت محاسبه نرخ فرسایش نسبی نمونهها، از رابطه (1) استفاده گردید.

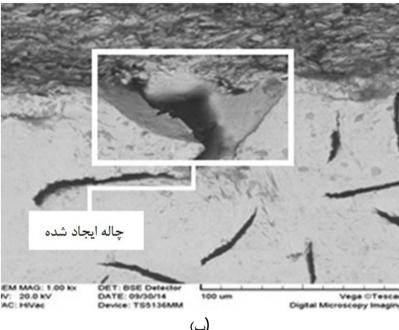
$$E = \frac{M_1 - M_2}{G} \tag{1}$$

استفاده شد. نتایج بدست آمده در جدول 4 نشان داده شده است.


جهت اندازه گیری تنش پسماند سطحی نمونهها، میزان تنش پسماند نمونهها قبل و بعد از تست سایش به روش استاندارد پراش اشعه ایکس با استفاده از دستگاه ساخت شرکت فیلیپس اندازه گیری شد. برای این منظور جهت محاسبه فاصله صفحات کریستالی از رابطه براگ (رابطه 2) و محاسبه تنش پسماند از رابطه (3) استفاده شد.

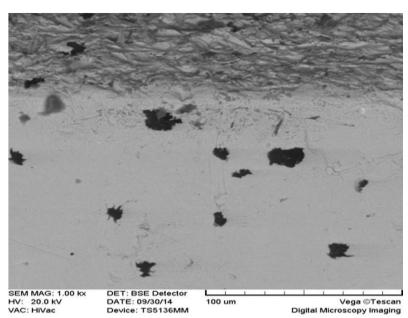
$$n\lambda = 2d\sin(\theta) \tag{2}$$


در رابطه (2)، n مرتبه انعکاس اشعه ایکس، $\lambda[\mathring{A}]$ طول موج اشعه ایکس، n مرتبه انعکاس (زاویه براگ) میباشد. $[\mathring{A}]$ فاصله بین صفحات کریستالی، و θ زاویه انعکاس (زاویه براگ)

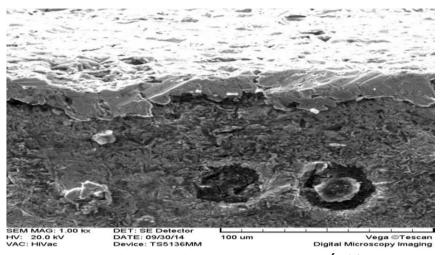

$$\sigma_{\varphi} = \frac{E}{d_{\varphi \varphi}(1+\nu)} \times \frac{\partial a_{\varphi \psi}}{\partial \sin^2 \psi} \tag{3}$$

در رابطه (3)، Z مدول الاستیسیته، ϕ زاویه چرخش نمونه حول محور E زوایه بین بردار عمود بر صفحه و نیمساز زاویه های تابیده شده و منعکس شده از سطح نمونه، v ضریب پواسون، $d_{\varphi 0}$ فاصله بین صفحات کریستالی در زاویه $d_{\varphi 0}$ فاصله بین صفحات کریستالی در زاویه دلخواه $d_{\varphi 0}$ فاصله بین صفحات کریستالی در زاویه دلخواه $d_{\varphi 0}$ میباشد [7].

شکل3 مسیر حرکت نازل مربوط به دستگاه پاشش ماسه بر روی قطعه کار


شکل 4 سطح مقطع چدن خاکستری بعد از تست فرسایش، (الف) ترکهای ایجاد شده در سطح قطعه کاردر اثر برخورد ذرات سطح مقطع، (ب) چالههای ایجاد شده در سطح قطعه کاردر اثر برخورد ذرات ساینده در عملیات پاشش ماسه

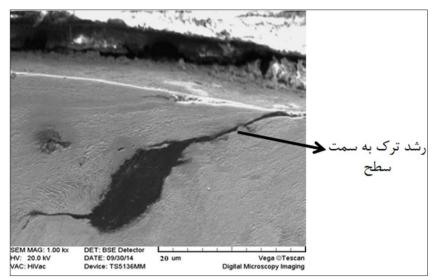
3- نتايج و بحث


3-1- تاثیر نوع چدن در نرخ فرسایش

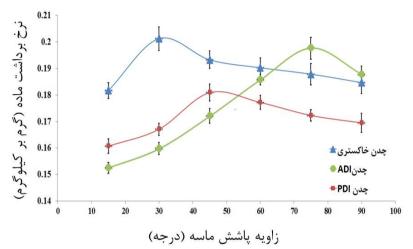
شکل 4 سطح مقطع چدن خاکستری بعد از فرسایش تحت زاویه 45 درجه را نشان میدهد. همانطور که شکلهای مذکور نشان میدهد، در چدن خاکستری، گرافیتهای آزاد به صورت صفحههایی نامنظم و غالباً کشیده و منحنی شکل در سراسر فاز زمینه پراکنده شدهاند. از آنجایی که این صفحات اغلب دارای نقاط تیز میباشند، میزان تمرکز تنش در این نقاط زیاد میباشد. لذا هنگام برخورد ذرات ساینده به سطح قطعهکار به علت تمرکز تنش، میکروترکهایی در این نقاط شکل گرفته و با رشد این میکروترکها به سمت سطح قطعهکار باعث کنده شدن قسمتی از سطح قطعهکار میشوند. بنابراین به نظر میرسد، علت اصلی نرخ فرسایش شدید در چدن خاکستری تشکیل سریع میکرو ترکهای سطحی و زیر سطحی میباشد. به طوری که ترکهای مذکور، در دیوارههای جانبی و نوک گرافیتهای آزاد تیغهای شکل به وضوح قابل مشاهده است.

شکلهای 5 و 6 به ترتیب سطح مقطع چدنهای PDI و ADI و ADI را بعد از عملیات پاشش ماسه تحت زاویه 45 درجه نشان می دهد. همان طور که ملاحظه می شود، در این چدن ها گرافیتهای آزاد به جای صفحات جداگانه و تیغه ای شکل به صورت کرههایی در سراسر فاز زمینه پراکنده شدهاند.

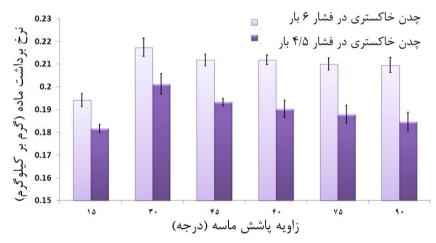
شكل 5 سطح مقطع چدن PDI بعد از برخورد ذرات ساينده به سطح نمونه

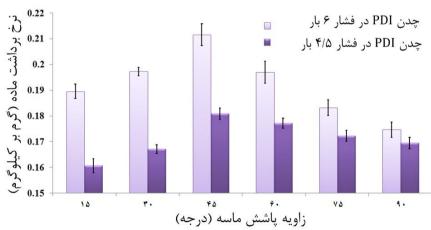

شکل 6 سطح مقطع چدن ADI بعد از برخورد ذرات ساینده

با توجه به کروی بودن گرافیتهای آزاد در این چدنها، نقاط تیز که سبب ایجاد تمرکز تنش در زمینه چدن میباشند کاهش یافته و بنابراین تشکیل ترکهای ریز سطحی و زیر سطحی در محل گرافیتهای آزاد در این چدنها بسیار کمتر از چدن خاکستری میباشد.

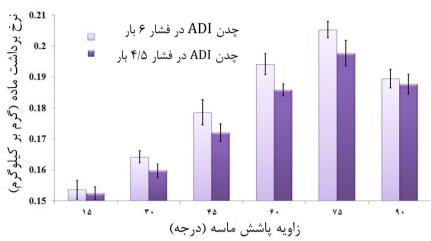

همچنین به نظر می رسد، میزان کرویت گرافیتهای آزاد نقش اساسی در ایجاد ترکهای زیر سطحی و میزان سایش داشته باشد، همان طوری که در شکل 7 مشاهده می شود، در چدن PDI گرافیتهای آزاد، که به صورت کرههای کامل نیستند و در نزدیکی سطح واقع شده اند، باعث ایجاد ترک شده و با رشد این ترکها به سمت سطح قطعه کار میزان فرسایش به صورت نسبی بیشتر می شود. در حالی که همان طوری که در شکل 6 مشاهده می شود، به علت درصد کرویت بالای گرافیتهای آزاد در چدن ADI و زمینه FCC علت باقیمانده) همراه با توزیع یکنواخت تیغههای ریز فریت هیچ گونه ترکی در این نمونه ها مشاهده نمی شود [8].

3-2- تاثير زاويه برخورد بر نرخ فرسايش


شکل 8 تغییرات نرخ سایش فرسایشی را با تغییر زاویه برخورد ذرات ساینده برای چدنهای PDI،ADI و GCl نشان میدهد. همانطور که نتایج نشان میدهد در زوایای برخورد کم (GCl درجه)، چدن خاکستری بیشترین و چدن ADl کمترین میزان سایش فرسایشی را از خود نشان میدهند. علت این امر را میتوان این گونه توجیه کرد که در زوایای برخورد کم (کمتر از 45 درجه) عامل اصلی برداشت ماده از سطح قطعه کار، توسط مکانیزم برش ذرات سایش ساینده میباشد [9]، در صورتی که مکانیزم مذکور در فرایند سایش فرسایشی مکانیزم غالب باشد، هر چه سختی و استحکام ماده پایین باشد، مقاومت کمتری در برابر برش ذرات ساینده از خود نشان داده و نرخ فرسایش بیشتری خواهند داشت.


شکل 7 ترکهای ایجاد شده در سطح مقطع چدن PDI بعد از فرسایش

شکل 8 تاثیر زاویه برخورد ذرات ساینده بر روی نرخ سایش فرسایشی تحت فشار 4/5 بار


شکل 9 تاثیر فشار پاشش ذرات ساینده بر روی نرخ فرسایش چدن خاکستری

شکل 10 تاثیر فشار پاشش ذرات ساینده بر روی نرخ فرسایش چدن PDI

جدول 4 مدول الاستیسیته و سختی نمونههای مورد آزمایش

سختى نمونه	سختى نمونه	مدول الاستيسيته	
(ویکرز)	(راكول C)	(GPa)	نمونه
314	31/27	110	 چدن خاکستری
396	40/23	166	چدن داکتیل پرلیتی
517	51/66	170	چدن داکتیل آستمپر شده

شکل 11 تاثیر فشار پاشش ذرات ساینده بر روی نرخ فرسایش چدن ADI

با توجه به موارد فوق، چدن خاکستری به علت سختی و مدول الاستیسیته پایین (جدول 4)، در برابر برش ذرات ساینده مقاومت کمتری نشان داده و دارای نرخ سایش بیشتری میباشد و در مقابل چدن ADI به علت سختی و استحکام بالا دارای نرخ سایش کمتری میباشد.

همچنین همانطوری که نتایج مذکور نشان می دهند، در زوایای برخورد زیاد (90-60 درجه) چدن ADI بیشترین و چدن PDI کمترین میزان سایش را از خود نشان می دهند. علت این مسئله را نیز می توان این گونه بیان کرد، چون در زوایای برخورد زیاد که مکانیزم اصلی برداشت ماده از سطح قطعه کار ایجاد و رشد میکرو ترکهای سطحی و زیر سطحی در اثر برخورد ذرات ساینده می باشد [2]، و هر چقدر قطعه کار دارای سختی بالاتری باشد امکان ایجاد و رشد ترک در آن بیشتر بوده و متعاقباً نرخ فرسایش آن بیشتر خواهد بود. با توجه به مطالب ذکر شده، چدن ADI به علت سختی و استحکام بالا (جدول 4)، در زوایای برخورد زیاد دارای کمترین مقاومت فرسایشی می باشد.

3-3- تاثیر فشار پاشش ذرات ساینده بر نرخ فرسایش

شکلهای 9 تا 11 تاثیر فشار پاشش بر روی نرخ سایش در زوایای برخورد مختلف را نشان میدهند. همانطور که ملاحظه میشود، در هر سه ماده (چدن خاکستری، ADI و PDI) و در تمامی زوایای برخورد با افزایش میزان فشار، میزان سایش فرسایشی افزایش می یابد و رفتار سایشی هر سه ماده در زوایای مختلف نسبت به افزایش فشار پاشش تقریباً یکسان است. با توجه به این که افزایش فشار پاشش ذرات ساینده موجب افزایش سرعت آنها میشود این امر مطابق رابطه هوچینگز (رابطه 4) موجب افزایش نرخ فرسایش با توان دوم می گردد [10].

 $E = \frac{K\rho U^2}{2H}$ (4)

در رابطه 4 نرخ فرسایش، ρ چگالی (کیلوگرم بر متر مکعب) ماده، K خریب فرسایش، U سرعت برخورد ذرات ساینده (متر بر ثانیه) و U سختی ماده میباشد.

3-4- بررسی تاثیر نوع چدن بر روی تنش پسماند سطح

جدول 5 میزان تنش پسماند نمونهها قبل و بعد از تست فرسایش را نشان می دهد. همان طور که در جدول 5 ملاحظه می شود، در تمامی نمونه ها، فرایند پاشش ماسه سبب افزایش تنش پسماند اولیه شده است، و در این میان چدن خاکستری کمترین تنش پسماند و چدن داکتیل آستمپر شده (ADI) بیشترین تنش پسماند را بعد از عملیات پاشش ماسه، از خود نشان می دهند. با توجه به شکل 4 علت این مسئله را اینگونه می توان بیان کرد؛ در چدن خاکستری گرافیتهای آزاد به صورت صفحات نامنظم در سراسر فاز زمینه پراکنده شده اند و هنگام برخورد ذرات ساینده به سطح قطعه کار، به علت تمرکز زیاد تنش در این نقاط، این صفحات به عنوان محلهایی برای علت تمرکز زیاد تنش در این نقاط، این صفحات به عنوان محلهایی برای

ایجاد میکرو ترکها عمل مینمایند.

همان طور که در قسمت قبل ذکر شد، در چدن خاکستری در نوک و کناره تیغههای گرافیت آزادی که در نزدیکی سطح قطعه کار واقع شدهاند، میکرو ترکهایی شکل می گیرد که با رشد این ترکها به سمت سطح قطعه کار تکههایی بزرگی از سطح کنده شده و به صورت چاله در روی سطح ظاهر میشوند (شکل 4). در اثر ایجاد این ترکها و کنده شدن قسمتهایی از سطح قطعه کار شرایط برای آزاد شدن تنشهای پسماند موجود در قطعه فراهم شده و قسمتی از تنشهای وارد شده به سطح قطعه، می توانند با ایجاد کرنشهایی کوچک در محل این ترکها آزاد شوند، به طوری که این پدیده سبب می شود در سطح چدن خاکستری تنش پسماند کمتری نسبت به چدن ا ADI و PDI و متمرکز شود.

4- تحليل واريانس (ANOVA)

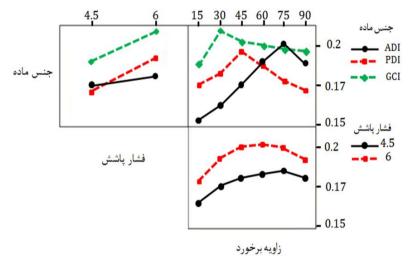
4-1- نتايج تحليل واريانس

جدول 6 نتایج مربوط به تحلیل اثرات اصلی و متقابل برای سه عامل مورد مطالعه (جنس ماده، فشار و زاویه برخورد) نشان می دهد. جهت انجام این تحلیل جنس ماده نیز به صورت یک عامل مجزا در نظر گرفته شده و تحلیل واریانس انجام گرفته از نوع تحلیل واریانس 8 طرفه می باشد. همان طوری که نتایج بدست آمده نشان می دهد هر 8 عامل مورد مطالعه روی میزان فرسایش اثر معناداری دارند و عوامل جنس ماده و فشار و همچنین عوامل جنس ماده و زاویه پاشش دارای اثر متقابل می باشند. به عبارت دیگر با تغییر جنس ماده رفتار آنها در مقابل تغییر فشار و زاویه برخورد متفاوت خواهد بود. ولی 8 عامل فشار و زاویه برخورد دارای اثر متقابل معناداری نمی باشند.

4-2- نمودار اثرات متقابل

نمودار اثرات متقابل سه عامل (نوع ماده، فشار و زاویه برخورد) برای میانگین دادههای مشاهده شده در شکل 12 آمده است. همانگونه که از این شکل قابل مشاهده میباشد، منحنیهای مربوط به اثرات متقابل دو عامل فشار و زاویه پاشش همدیگر را قطع نکردهاند که حکایت از عدم اثر متقابل این دو عامل دارد. این نتیجه با آنچه که در جدول تحلیل واریانس (جدول 6) ارائه

گردیده، مطابقت دارد.


5- نتيجه گيري

در این پژوهش، به منظور انتخاب جنس مناسب جهت ساخت قالبهای ماهیچه گیری در صنایع ریخته گری، تاثیر زاویه برخورد و فشار پاشش ذرات ساینده بر روی رفتار فرسایشی و تنش پسماند ناشی از عوامل فوق بر روی چدنهای PDI ، ADI و GCl به صورت مقایسه ای مورد بررسی قرار گرفت. دستاوردهای این پژوهش عبارتند از:

1. میزان سایش فرسایشی نمونهها شدیداً به زاویه برخورد ذرات ساینده وابسته بوده و در زوایای برخورد کم (کمتر از 30 درجه) چدن ADI و در زوایای برخورد زیاد (بیشتر از 60 درجه) چدن PDI بیشترین مقاومت فرسایشی را از خود نشان دادند.

2. رفتار فرسایشی هر سه ماده با افزایش فشار پاشش ذرات ساینده تقریباً یکسان است و در تمامی زوایای برخورد با افزایش میزان فشار، میزان سایش فرسایشی افزایش می یابد.

3. در چدن خاکستری، گرافیتهای آزاد تیغهای شکل به عنوان محلهایی برای جوانهزنی و رشد ترک عمل کرده و باعث افزایش شدید نرخ فرسایش در این چدن می شوند.

شکل 12 نمودار اثرات متقابل عوامل جنس ماده، فشار و زاویه برخورد

جدول 5 میزان تنش پسماند نمونهها قبل و بعد از تست فرسایش

	· / · / · / · · / · · · /	<u></u>	
تنش پسماند اضافه شده در اثر فرایند پاشش ماسه (MPa)	تنش پسماند بعد از تست (MPa)	تنش پسماند قبل از تست (MPa)	جنس نمونه
18/5	-104/7	-86/2	چدن خاکستری
20/5	-203/4	-182/9	چدن PDI
28/5	-238/5	-210	چدن ADI
	زاویه برخورد ذرات ساینده: 90	ساینده: 5 بار	فشار پاشش ذرات

جدول 6 نتایج تحلیل واریانس (ANOVA) برای عوامل (جنس ماده، فشار و زاویه پاشش)

عامل	DF	Seq SS	Adj SS	Adj MS	F	Р
جنس ماده (M)	2	0/006133	0/0061333	0/0030667	178/67	0/000
فشار (P)	1	0/004127	0/0041269	0/0041269	240/44	0/000
زاویه پاشش (A)	5	0/003772	0/0037721	0/0007544	43/95	0/000
M×P	2	0/000902	0/0009022	0/0004511	26/28	0/000
M×A	10	0/005612	0/0056115	0/0005611	32/69	0/000
P×A	5	0/00011	0/0001103	0/0000221	1/28	0/292
$M \times P \times A$	10	0/000625	0/0006248	0/0000625	3/64	0/002
خطا	36	0/000618	0/0006179	0/0000172		
جمع	71	0/021899				
0/00414288 = 3	S	R= -Sq 97/18	%	R= -Sq(Adj)	94/44 %	

- [2] M. Salehi, F. Ashrafizadeh, *Surface metallurgy and tribology*, pp. 93-102: Iranian Society of Surface Science and Technology, 1995.
- [3] L. Chang, I. Hsui, L.-H. Chen, S. Lui, Influence of austenization temperature on the erosion behavior of austempered ductile irons, *Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material*, Vol. 15, No. 1, pp. 29-33, 2008.
- [4] K. N. Murthy, P. Sampathkumaran, S. Seetharamu, Abrasion and erosion behaviour of manganese alloyed permanent moulded austempered ductile iron, *Wear*, Vol. 267, No. 9, pp. 1393-1398, 2009.
- [5] F.-Y. Hung, L.-H. Chen, T.-S. Lui, A study on erosion of upper bainitic ADI and PDI, *Wear*, Vol. 260, No. 9, pp. 1003-1012, 2006.
- [6] D. Arola, M. McCain, S. Kunaporn, M. Ramulu, Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress, *Wear*, Vol. 249, No. 10, pp. 943-950, 2001.
- [7] M. Sedighi, R. Nazemnezhad, Analysis of the Effect of Diffraction Peak Positioning Method on Residual Stress Measurement, Using the Standard XRD Technique, Aerospace Mechanics (Manufacturing), Vol. 2, No. 7, pp. 73-88, 2011.
- [8] J. Yang, S. K. Putatunda, Effect of microstructure on abrasion wear behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process, *Materials Science and Engineering: A*, Vol. 406, No. 1, pp. 217-228, 2005.
- [9] H. Wensink, M. C. Elwenspoek, A closer look at the ductile–brittle transition in solid particle erosion, *Wear*, Vol. 253, No. 9, pp. 1035-1043, 2002
- [10] A. W. Batchelor, L. N. Lam, M. Chandrasekaran, *Materials degradation* and its control by surface engineering, pp. 93-102: World Scientific, 2002. English

4. در چدن خاکستری، به علت ایجاد ترکهای سطحی در محل گرافیتهای آزاد و کنده شدن تکههایی از سطح قطعه تنش وارده به قطعه به راحتی میتواند آزاد شده و تنش پسماند کمتری در سطح قطعه ذخیره میشود.
5. با توجه به نتایج بدست آمده جنس مناسب برای قطعات راهگاهی که زاویه برخورد ذرات ساینده به آنها در فرایند قالبگیری کمتر از 30 درجه میباشد، چدن ADI و در قطعاتی که زاویه برخورد ذرات ساینده به آنها بیشتر از 60 درجه میباشد، چدن PDI پیشنهاد می گردد.

6- نتایج حاصل از تحلیل واریانس مربوط به سه عامل جنس قطعه کار، زاویه برخورد و فشار پاشش نشان دادند که هر 8 عامل مورد مطالعه روی میزان فرسایش اثر معناداری دارند و عوامل جنس ماده و فشار و همچنین عوامل جنس ماده و زاویه پاشش دارای اثر متقابل می باشند.

6- تقدير و تشكر

بدین وسیله نویسندگان مقاله از مدیریت و مسئولین محترم شرکت تراکتورسازی تبریز و کارشناسان محترم کارگاههای ماشین ابزار و تولید مخصوص دانشگاه تبریز که در انجام پژوهش حاضر و ساخت دستگاه تست سایش نویسندگان را حمایت و یاری نمودند صمیمانه تشکر مینمایند.

7- منابع

[1] A. Yabuki, K. Matsuwaki, M. Matsumura, Critical impact velocity in the solid particles impact erosion of metallic materials, *Wear*, Vol. 233, pp. 468-475, 1999.