

ماهنامه علمى پژوهشى

دسی مکانیک مدرس

بررسی مانورپذیری در شناورهای تندرو به کمک مدل سازی عددی

 3 سجاد حاجی زاده 1 ، محمد سعید سیف 2* حمید مهدیقلی

1- دانشجوی دکتری، مهندسی دریا، دانشگاه صنعتی شریف، تهران 2- استاد، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران 3-استادیار، مهندسی مکانیک، دانشگاه صنعتی شریف، تهران * تهران، صندوق پستی seif@sharif.ir ،11365-9567

مدلسازی مانور شناورها در مراحل ابتدایی طراحی و بهرهبرداری از شناور از اهمیت فراوان برخوردار است. در طی سالیان اخیر مدلهای مختلفی از مانور شناورهای جابجایی ارائه شده که قادر هستند با تقریب مناسبی کیفیت مانور شناور را تبیین نمایند، لیکن در زمینه مانورپذیری شناورهای تندرو همچنان شبیهسازی مانور آنها با استفاده از مدلهای ریاضی هنوز وضعیت مناسبی ندارد. در این مقاله یک مدل ریاضی جهت مدلسازی مانور شناورهای تندروی پروازی توسعه داده شده و تاثیرات سیسستمهای کنترلی از جمله سکان بر مانور شناور تندرو، بررسی شده است. نیروها و ممانهای ایجاد شده ناشی از وجود سکان به سمت راست معادلات مانور اضافه شده است و شبیه سازی های حرکت شناور تندرو در مسیر مستقیم و غیر مستقیم با زوایای سکان مثبت و منفی انجام شده است و همچنین شبیه سازی مانور دور زدن برای شناور تندرو صورت پذیرفته است. در نهایت نتایج عددی بدست آمده با نتایج تجربی مقایسه گردیده و دقت آنها ارزیابی شده است. بر اساس نتایج حاصله استفاده از مدل ریاضی توسعه داده شده برای شبیه سازی مانور مستقیم و غیر مستقیم از مقدار مجاز مطرح شده در آیین نامه کمتر است، برای شبیه سازی مانور دور زدن، نتایج بدست آمده از شبیه سازی با نتایج تست تجربی کمتر از ده درصد اختلاف دارد. در نهایت حساسیت سنجی بر روی اندازه سکان در مانور دور زدن شناور تندرو و تاثیر آن بر روی میزان دایره چرخش شناور تندرو انجام شده است.

اطلاعات مقاله

مقاله يژوهشي كامل دريافت: 19 خرداد 1394 يذيرش: 19 مرداد 1394 ارائه در سایت: 08 شهریور 1394 مدلسازي شناور تندرو

Evaluation of planing craft maneuverability using numerical modeling

Sajad Hajizadeh, Mohammad Saeed Seif, Hamid Mehdigholi

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran. * P.O.B. 11365-9567 Tehran, Iran, seif@sharif.ir

ARTICLE INFORMATION

Original Research Paper Received 09 June 2015 Accepted 10 August 2015 Available Online 30 August 2015

Keywords: Maneuvering Modeling Planing Ship

ABSTRACT

Ship maneuvering in calm water and waves is an important topic to avoid collisions and broaching, therefore reliable ship maneuvering simulations are required for incident analysis and prevention. The maneuverability of planing crafts has been the subject of many research projects during the last few decades. To assess the maneuverability of planing crafts at the early design stage, reliable simulation models are required. Traditionally, these tools have used empiric descriptions of the forces and moments on the planing craft's hull. However, today new numerical modeling techniques are available, enabling more reliable predictions of the maneuvering behaviour of planing crafts. Ship maneuvering performance evaluation is essential in primary design stages. Ship maneuvering calculations, horizontal plane motion control and development of maneuvering simulators require a mathematical description of ship maneuvering. In recent years, different mathematical models have been suggested for maneuvering of displacement vessels that are capable of estimating vessel maneuvers with acceptable precision. But simulation of planing craft maneuverability through mathematical model is not common yet and is the subject of future research. In this paper different maneuvers are executed through the mathematical model. Then the mathematical model is solved and different maneuvers are simulated. Simulations are validated by model tests. Finally, the influence of rudder angle on maneuverability of planing ship is studied. Difference between simulation results and experimental is less than ten percent. At the end of this paper the effect of the rudder dimension on the tactical diameter of planing ship in turning maneuvering is evaluated.

روشهای تحلیلی ارزیابی مانور شناورها، پیشبینی مانور به طور سنتی مبتنی بر روابط تجربی بدست آمده از بانک اطلاعاتی یا تستهای مدل بوده است. روش مبتنی بر بانک اطلاعاتی تجربی از مدل ریاضی و ضرایب مانوردهی تشکیل شده است که این ضرایب یا به طور کامل به صورت تجربی محاسبه

1- مقدمه

پیشبینی عملکرد شناور در حال مانور، یکی از موضوعات بسیار مورد توجه در بررسی هیدرودینامیک شناورها است. مانور شناورها پدیدهای است که دارای طبیعت به شدت غیرخطی و غیردائمی است. بدلیل محدودیتهای

شدهاند یا از روشهای نیمه تجربی – نیمه تحلیلی بدست آمدهاند.

در سالهای اخیر طراحی و ساخت شناورهای تندروی پروازی توسعه قابل توجهی یافته است، اما پیشبینی مانور شناورهای تندرو بسیار مشکل است. اگر در بررسی این مسئله از روشهای نیمه تجربی استفاده شود، نتایجی که بدست میآیند تنها در محدوده اطلاعات موجود برای مدلهای تست شده، قابل استفاده هستند. توصیف تحلیلی شناورهای پروازی سرعت بالا، شامل چندین نوع مختلف از پدیدههای جریانی از قبیل پرواز کردن، برخوردهای هیدوردینامیک و به میزان کمتری شامل مسائل هیدرواستاتیک و سطح موج تولید شده خواهد بود. نیروی لیفت در شناورهای سطحی از جابجایی هیدرواستاتیک آب و از تغییر ممنتم دینامیکی آب در زیر شناور فیدرواستاتیک میباشد. با افزایش سرعت، نیروی لیفت محدود به نیروهای هیدرواستاتیک میباشد. با افزایش سرعت، نیروی لیفت هیدرودینامیکی آب نیز به نوبه خود باعث کاهش نیروهای هیدرواستاتیکی خواهد شد. به آب نیز به نوبه خود باعث کاهش نیروهای هیدرواستاتیکی خواهد شد. به همین دلیل معادلات حاکم بر مسئله غیر خطی بوده و درنتیجه معادلات مانور شناورهای تندرو پیچیده شده و به آسانی قابل حل نیستند.

اولین فعالیتها در زمینه مدلسازی مانور شناورها به زمان داویدسون بر می گردد که معادلات کامل مانور استخراج شده و وابستگی پیچیده توانایی دور زدن و حفظ مسیر در مانور نشان داده شده است. روابط داویدسون پایه و اساس تئوریهای امروزی مانور میباشند [1]. دو تئوری اساسی در زمینه مدلسازی مانور شناورها ارائه شده است که همچنان بسیار پر کاربرد میباشند، تئوری آبکویتز و ام ام جی 2 . تئوری آبکویتز مشتمل بر برآورد نیروهای وارد بر کشتی به عنوان تابعی از مشخصات حرکتی شناور و انتگرال 2 گیری از معادلات حرکت جهت بدست آوردن مسیر حرکت شناور در طی مانورهای معمول است [2].

با پیشرفت و توسعه رایانههای پر سرعت، شبیه سازی به عنوان راه حلی ساده به سرعت جایگزین تستهای مدل شد. با توسعه رایانهها، تحولی عظیم نیز در کاربرد تئوریهای کنترل برای حرکات مانوردهی شناورها مشاهده می شود که مقالات وبستار، بار و فوسن در این زمینه قابل ذکر است [3].

در سالهای اخیر با ورود شناورهای تندرو به بازار، در زمینه مدلسازی مانور این شناورها کارهای عددی و تجربی زیادی انجام شده است. اولین تجارب بر روی یک شناور نیمه جابجایی به صورت تست خود رانش انجام شده است. آزمایشهای بر روی مدل برای بررسی افت پایداری رول یک شناور در سرعت های بالا صورت گرفته و چندین چیدمان اسپری ریل روی مدلهای 1/8 و 3/26 متری تست شده است. آزمایشهای انجام شده، نشان داد که کاهش در پایداری رول در سرعت بالا می تواند منجر به ناپایداری جهتی یا رخداد پدیده بروچینگ شود [4].

تکنیکهای تجربی مهم در تست مانور شناور تندرو در این مرجع مورد مطالعه قرار گرفته و کیفیتهایی که جهت یک مانور مناسب و کنترل در سرعتهای بالا مورد نیاز است، مورد بررسی قرار گرفته است. برخی از جنبههای طراحی شناور تندرو از جمله زاویه ددرایز شناور، موقعیت طولی مرکز ثقل، موقعیت عمودی مرکز ثقل و وسایل کنترل تریم شناور(تریم تب) که تاثیر ویژهای روی مانور این نوع از شناورها دارند، مورد بررسی قرار گرفته است [5].

جهت تبیین رفتار شناورهای پلنینگ در آب آرام تستهای مدل مقید

استاتیکی با دو فرم بدنه پلنینگ در حوضچه کشش دانشگاه صنعتی دلف انجام شده است. برنامه تست شامل اندازه گیری سه مولفه نیرو و سه مولفه ممان به صورت تابعی از پیچ، هیو، رول، دریفت و سرعت مدل بوده است. همچنین در ادامه به وسیله تست مدل، جرم افزوده و نیروی میرایی بدنههای پلنینگ و نیروهای سکان و پروانه مدل، اندازه گیری شده است [6]. مدل شش درجه آزادی غیرخطی حرکات شناور مبتنی بر اطلاعات تست مدل قابل تشریح است. سپس میتوان معادلات مربوط به شناور تندرو در حوزه زمان را مورد برنامه نویسی کامپیوتری قرار داده و ناپایداری دینامیکی و مانوردهی شناور تندرو را بررسی کرد. در این مرجع تعدادی تست مدل مقید بوسیله دو مدل انجام شده که در طی آن نیروها و ممانها در شش درجه آزادی حرکت اندازه گیری شده است. این تستها تنها اطلاعات محدودی در خصوص هیدرودینامیک شناورهای پلنینگ ایجاد میکنند [6].

جهت درک بهتر از نیروها و ممانهای هیدرودینامیکی وارد بر بدنه شناورهای پروازی در حین مانور در صفحه افقی، حرکات نوسانی شناور تندرو در طی تست مورد بررسی قرار میگیرد. در حین این تستها مدل بطور کامل مقید شده و تحت نیروی حرکت مانور قرار گرفته است (اسوی کامل، یاو کامل، و یاو همراه با دریفت). نیروها و ممانها در شش درجه آزادی اندازه گیری شده و در حین انجام تستها آبخور، زاویه تریم، سرعت رو به جلو و سرعت اسوی و یاو شناور بطور منظم تغییر داده میشود. بر اساس نیروها و ممانهای اندازه گیری شده یک مدل ریاضی با انجام تحلیل و رگرسیون خطی ممانهای اندازه گیری شده یک مدل ریاضی با انجام تحلیل و رگرسیون خطی با ضرایب متغیر به عنوان ورودی فرمول بندی شده است. متعاقباً مدل ریاضی در یک نرم افزار شبیه سازی که قبلاً برای توصیف رفتار حرکتی بدنه پروازی با شش درجه آزادی گسترش یافته بود، بکار برده شده و ترمهای هیدرودینامیکی در قالب جرم افزوده برای وابستگی به سرعت حرکت رو به جلو در این برنامه عددی ظاهر میشوند [7].

وضعیت حرکتی که شامل آبخور، زاویه تریم و زاویه هیل در یک شناور تندرو است، معمولاً در طی حرکات مانوردهی تغییر میکند. در روشهای پیشبینی مانور شناورهای جابجایی از اثر وضعیت حرکتی شناور بر حرکات مانوردهی صرف نظر میشود. در این نوع از شناورها تغییرات وضعیت حرکتی در طی مانور اندک بوده و در برخی از فرم بدنههای به خصوص چندان مورد توجه نمیباشند. در شناورهای تندرو تخمین وضعیت مانور شناور از روشهای معمول دشوار است، لذا برای شبیه سازی بهتر مانور شناورهای تندرو به شامل تریم و هیل و سرا نیز است که مواردی همچون وضعیت حرکتی شامل تریم و هیل و سرا نیز در مانور شناور منظور نمایند. در تحقیقات قبلی اثر حرکات مانوردهی بر وضعیت حرکتی و اثرات تغییر وضعیت حرکتی بر مانوردهی شناور مورد بررسی قرار گرفته است. بر طبق نتایج حاصل برخی از مانورهای شناور تندرو باعث تغییر وضعیت حرکتی شده و از طرف دیگر وضعیت حرکتی شده و از طرف دیگر دارد. لذا در برآورد مانور پذیری شناورهای تندرو ضروری است که این موارد نیز مدنظر قرار گیرد [8].

جهانبخش و همکاران، به کمک نرم افزار ناملز³ که گسترش دادهاند و از خصوصیات نرم افزار آنها این است که قادر به شبیه سازی شش درجه آزادی عکس العمل بین سازه و سیال در دو فاز میباشد، به شبیه سازی مانور یک شناور کاتاماران پروازی تندرو پرداختند. آنها در مقاله خود به بررسی شعاع دایره چرخش شناور کاتاماران تندرو پروازی در زوایای مختلف تراست

¹⁻ Plar

²⁻ MMG (Maneuvering Models Group(Japan))

يرداخته اند [9].

جوانمردی و همکاران خود، تاثیر هر سه موقعیت طولی بدنههای جانبی شناور تریماران را بر مانور آن مورد مطالعه قرار دادهاند. برای شبیه سازی هیدرودینامیک از نرم افزار ناملز استفاده کردهاند. در نتایج خود نشان دادند که موقعیتهای طولی قرارگیری بدنههای جانبی تاثیر به سزایی بر مانورپذیری شناور تریماران دارد [10].

معادلات ریاضی مدلهای مانور با استفاده از محاسبات جریان ویسکوز استخراج شده است. در این مدلهای ریاضی استخراج شده به کاربرد شبیه سازهایی که در آنها مانور رو به عقب یا جانب ممکن باشد، توجه زیادی شده است [11].

ضرائب هیدرودینامیکی مانور شناورها با استفاده از روش های شناسایی سیستم از جمله روش فیلتر کالمن پیشرفته بر پایه داده های تست روش های تجربی و تحلیلی و دینامیک سیالات محاسباتی استخراج شده است و به بررسی دقت این روشها در محاسبه ضرائب هیدرودینامیکی مانور شناورها پرداخته شده است [12].

به بررسی مانورپذیری شناورها قبل از فاز طراحی آنها با استفاده از دینامیک سیالات محاسباتی بر اساس دادههای بدست آمده از تست تجربی مکانیزم حرکت صفحهای انجام شده، پرداخته شده است و مانور پذیری تست دایره چرخش و تست زیگزاگ شناورها در قبل از فاز طراحی آنها مورد بررسی قرار گرفته است [13].

لین در سال 2011، معادلات مانور را با حل معادلات پتانسیل سرعت به کمک نرم افزار عددی بدست آورد. در اینجا خروجی تراست پروانه به معادلات مانور اضافه شده است و نیروهای سکان با حل عددی معادلات پتانسیل در اطراف بدنه بدست آمده است و با استفاده از انتگرال گیری فشار حول بدنه نیروهای سکان را محاسبه نموده است. در نهایت فرمول های سکان بیان شده برای محدوده عدد فرود 0/2 الی 0/4 و تنها برای شناورهای نظامی معتبر بوده است [14].

لین در سال 2012، به بررسی مانور غیر دائمی (در این مانور سرعت شناور و زاویه سکان متغیر می باشد) پرداخته است و موقعی که به بررسی مانور غیر دائمی پرداخته می شود تاثیر حرکات قائم و عرضی به شدت افزایش می یابد، در مدلسازی انجام داده زاویه سکان و سرعت رو به جلوی شناور متغیر بوده و به سرعت با زمان تغییر می کند و معادلات مانور با استفاده از حل معادلات پتانسیل سرعت بدست آمده است [15].

ژانگ و همکاران در سال 2012، به مدلسازی عددی 4 درجه آزادی مانور شناور پرداختند. در این تحقیق تغییرات سطح آب با استفاده از تئوری خطی موج محاسبه شده است و در نهایت مدل 6 درجه آزادی حرکت با استفاده از مومنتم نیوتن و تئوری مومنتم بدست آمده است. در این تحقیق مقدار نیروی سکان با استفاده از رابطه ساده انتگرال گیری فشار بر روی سطح آن بدست آمده است [16].

در تحقیقات قبلی به مدلسازی کامل مانور شناور تندرو پرداخته نشده است و تنها اثر یک پارامتر هیدرودینامیکی از شناور تندرو را، بر روی مانور آن مورد بررسی قرار دادهاند. در تحقیق حاضر به مدلسازی مانور شناور تندرو برداخته شده است و تاثیر سکان بر مانور پذیری شناور تندرو مورد بررسی قرار گرفته است. در نهایت جهت بررسی دقت تحقیق حاضر، نتایج بدست آمده از مدلسازی عددی با نتایج تجربی چاپ شده از یک نمونه شناور تندرو، مورد مقایسه قرار گرفته است. در تحقیق حاضر نشان داده شده است

که با یک روش کاملاً ساده و کم هزینه می توان به راحتی مانور پذیری یک شناور تندرو را به طور کامل مورد بررسی قرار داد.

2- معادلات مانور شناورهاي تندرو

در آنالیز مانور و دریامانی شناورهای معمولی(جابجایی) فرض میشود که سطح خیس همیشه ثابت میماند درحالی که در شناورهای تندرو این سطح به همراه آبخور و زاویه تریم در سرعتهای مختلف، متفاوت است. براین اساس [17]:

- 1. تمام ضرایب هیدرودینامیکی به شدت به سرعت وابستهاند حتی زمانی که از فرضیات ساده کننده استفاده شود.
- 2. حرکات طولی و عرضی ترکیب میشوند و نیز از آنجا که تغییرات تریم و هیو روی سطح خیس شده شناور تاثیر می گذارند در نتیجه نیروهای طولی و عمودی نیز تحت تاثیر قرار می گیرند.
- 3. در امواج، سطح خیس شده شناور خصوصاً هنگام عبور موج تغییر می کند در حالات شدید حتی امکان جدا شدن شناور از آب نیز وجود دارد. به عبارت دیگر به علت وجود لیفت دینامیکی محاسبه ضرایب مورد استفاده در معادلات مانور شناورهای تندرو باید با دقت صورت گیرد.

معادلات حرکت برای آنالیز رفتار یک شناور تندرو به صورت زیر و نسبت به مبدا مختصات روی مرکز ثقل شناور نوشته می شود [17]:

همانطور که در شکل 1 نشان داده شده است، u سرعت خطی حرکت سرج، v بیانگر سرعت خطی حرکت اسوی، w هم نشان دهنده سرعت خطی حرکت هیو شناور میباشد. p نشان دهنده سرعت زاویهای حرکت رول، p بیانگر سرعت زاویهای حرکت پیچ و r نشان دهنده سرعت زاویهای حرکت سرج، یاو است. X نشان دهنده مقدار نیروی وارد به شناور در راستای حرکت اسوی، X نشان دهنده مقدار نیروی وارد به شناور در راستای حرکت اسوی، X نشان دهنده مقدار نیروی وارد به شناور در راستای حرکت هیو، X نشان دهنده ممان حرکت رول، X نشان دهنده ممان حرکت پیچ و X نشان دهنده ممان حرکت یاو شناور میباشد.

$$X = m(\dot{u} + wq_a - vr_a)$$

$$Y = m(\dot{v} + ur_a - wp_a)$$

$$Z = m(\dot{w} + vp_a - uq_a)$$

$$K = \frac{d}{dt}(I_{xx}\omega_x) - r_a(I_{yy}\omega_y) + q_a(I_{zz}\omega_z)$$

$$M = \frac{d}{dt}(I_{yy}\omega_y) - p_a(I_{zz}\omega_z) + r_a(I_{xx}\omega_x)$$

$$N = \frac{d}{dt}(I_{zz}\omega_z) - q_a(I_{xx}\omega_x) + p_a(I_{yy}\omega_y)$$

$$\varphi(1)$$

$$\varphi(1)$$

$$\varphi(1)$$

$$\varphi(2)$$

$$\varphi(3)$$

$$\varphi(1)$$

$$\varphi(3)$$

$$\varphi(4)$$

$$\varphi(1)$$

$$\varphi(2)$$

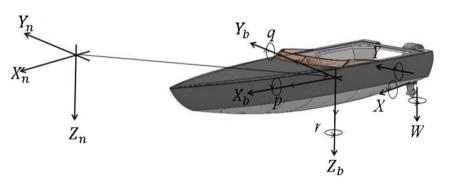
$$\varphi(3)$$

$$\varphi(3)$$

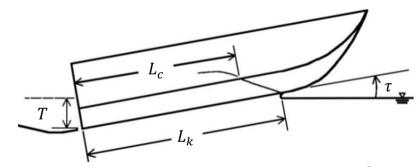
$$\varphi(4)$$

$$\varphi($$

مقدار نیرو در جهت اسوی و ممان در جهت های رول و یاو برابر است با: $Y = Y_{\dot{v}}\dot{v} + Y_{\dot{v}}v + Y_{\ddot{\phi}}\ddot{\phi} + Y_{\dot{\phi}}\dot{\phi} + Y_{\dot{\phi}}\phi + Y_{\dot{\psi}}\ddot{\psi} + Y_{\dot{\psi}}\dot{\psi}$ $K = K_{\dot{v}}\dot{v} + K_{\dot{v}}v + K_{\ddot{\phi}}\ddot{\phi} + K_{\dot{\phi}}\dot{\phi} + K_{\dot{\phi}}\phi + K_{\ddot{\psi}}\ddot{\psi} + K_{\dot{\psi}}\dot{\psi}$ $N = N_{\dot{v}}\dot{v} + N_{\dot{v}}v + N_{\ddot{\phi}}\ddot{\phi} + N_{\dot{\phi}}\dot{\phi} + N_{\dot{\phi}}\phi + N_{\ddot{\psi}}\ddot{\psi} + N_{\dot{\psi}}\dot{\psi}$ (2)


و پارامتر I نشان دهنده ممان اینرسی و پارامتر m نشان دهنده جرم شناور

که \emptyset نشان دهنده مقدار زاویه حرکت رول شناور و $\dot{\emptyset}$ نشان دهنده سرعت زاویه حرکت رول و $\ddot{\emptyset}$ بیانگر شتاب زاویه ای حرکت رول می باشد و ψ نشان دهنده ناویه حرکت یاو شناور و $\dot{\psi}$ نشان دهنده سرعت زاویه حرکت یاو و $\ddot{\psi}$ بیانگر شتاب زاویه ای حرکت یاو می باشد.


برای بدست آوردن ضرائب هیدرودینامیکی به کار رفته در روابط (2)، تعداد آزمایشهای زیادی بر روی شناورهای با فرم بدنههای منشوری که دارای زاویه ددرایزهای 10، 20 و 30 درجه بودند، انجام شده است. این مدلها در سرعتهای متفاوت، زوایای دریفت مختلف، در زوایای رول متفاوت و زوایای تریم متفاوتی تست شدهاند و در نهایت برای هر یک از ضرایب هیدرودینامیکی فوق روابط بدست آمده است [17]. پس از تعریف پارامترهای به کار رفته در محاسبه ضرائب هیدرودینامیکی در جدول 1، سپس روابط استخراج شده برای محاسبه این ضرائب، در جدول 2 بیان گردیده است. متغیرهای اساسی به کار رفته در روابط استخراج شده برای محاسبه ضرائب هیدرودینامیکی در شکل 2 نشان داده شده است.

3- نيروهاي سكان

فرمولاسیون نیروهای سکان در این مقاله مبتنی بر کارهای اینوئه و هوفت میباشد [6]. تقریب خام اولیه برای مراحل ابتدایی طراحی شناور پروازی کفایت خواهد کرد که در آن ابعاد دقیق سکان هنوز مشخص نشده است. نیروهای وارد بر سکان در شکل 3 نشان داده شده است.

شکل 1 مختصات ثابت و مختصات متحرک در حرکت شناور

شکل 2 تعریف زاویه تریم متوسط و طول کیل خیس شده و طول چاین برای یک شناور پروازی [14]

جدول 1 تعریف پارامترهای به کار رفته در محاسبه ضرایب هیدرودینامیکی [14]

تعريف	پارامتر
متوسط عرض خیس شده چاین	В
ددرايز	β
تريم	au
طول خیس شده از کیل	L_K
طول خیس شده از چاین	L_C
آبخور پاشنه	T
(U/\sqrt{gB}) ضریب سرعت	C_V
فاصله طولی مرکز ثقل از پاشنه شناور	LCG

جدول 2 روابط بیان شده برای ضرایب هیدرودینامیکی شناور تندرو پروازی [17]

نحوه محاسبه	ضريب
$-B^2\rho\tan(\beta)k(\beta)[L_K+2L_C]/12$	$Y_{\dot{V}}$
0	$K_{\dot{V}}$
$-B^2 \rho \tan(\beta) k(\beta) [L_K^2 + 2L_K L_C + 3L_C^2]/12$	$N_{\dot{V}}$
$N_{\dot{V}}$	$Y_{\ddot{m{\psi}}}$
0	$K_{\ddot{m{\psi}}}$
$-B^2 \tan(\beta) k(\beta) [L_K^3 + 2L_K^2 L_C + L_C^2 L_K + 3L_C^2]/12$	$N_{\ddot{oldsymbol{\psi}}}$
0	$Y_{\ddot{oldsymbol{\phi}}}$
$-0.010237 \rho B^5 \lambda (1 - \sin \beta) + h_1 Y_{\dot{V}}$	$K_{\ddot{\phi}}$
0	$N_{\ddot{oldsymbol{\phi}}}$
$-0.5\rho UB^2[0.6494\beta^{0.6}T^2C_v^2]$	Y_{v}
$Y_v[-KG + 1.5145B/\beta^{0.342}]$	K_v
$Y_v[-LCG + 12.384BT^{0.45}/(\tau + 5.28)]$	N_v

 a_r سرعت جریان محلی ورودی به سکان برای سکانی با ارتفاع a_r و طول وتر a_r با سطح جانبی a_r و ضریب منظری موثر a_r تقریباً برابر است با:

$$u_r = U(1 - w_p) + C_{DU} \cdot \Delta u_p \tag{3}$$

$$v_r = C_{db}(v \cos \phi_F + w \sin \phi_F) - C_{dr}\sqrt{x_r^2 + y_r^2} \cdot r + C_{dr}\sqrt{x_r^2 + z_r^2} \cdot q$$
 (4)

$$U_{rud} = \sqrt{u_r^2 + v_r^2} {5}$$

 $\sqrt{u_r}^2 +
u_r^2$ که در آن اثر افزایش سرعت از روابط ذیل محاسبه می گردد:

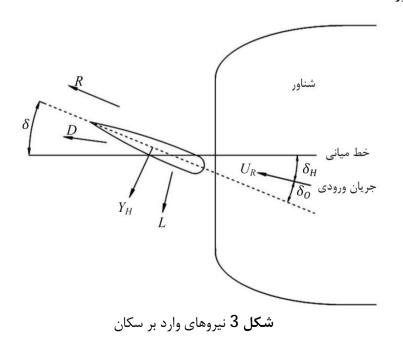
$$C_{DU} = 0.7 \frac{D_p}{h_r} \ \ \, 0.9 \frac{D_p}{h_r}$$
 (6)

مقدار افزایش سرعت جریان در رابطه (3) عبارت است از:

$$\Delta u_p = \sqrt{u_p^2 + \frac{8X_{\text{prop}}}{\rho\pi D_p^2}} - u_p \tag{7}$$

پارامترهای $C_{\rm dr}$ و $C_{\rm dr}$ تحت عنوان فاکتور هموار سازی جریان شناخته می شوند و مقادیر آنها عبارتند از:

$$C_{\rm db} = 0.7 \tag{8}$$


$$C_{\rm dr} = 1.0 \tag{9}$$

در رابطه (4) ورابطه (4) زاویه بین سکان و صفحه قائم و x_r, y_r, z_r نشان دهنده مختصات سکان نسبت به مرکز ثقل شناور است. در شکل (4) مقدار فاصله طولی سکان از مرکز ثقل شناور تندرو نشان داده شده است.

زاویه حمله موثر جریان به سکان عبارت است از: $\delta_e = \delta - \delta_H$

$$\delta_H = \arctan \frac{v_r}{u_r} \tag{10}$$

نیروی جانبی را می توان با کمک رابطه (5) بصورت رابطه (11) بدست آورد:

$$L = \frac{1}{2}\rho A_t C_{\rm L\delta} U_{\rm rad}^2 \sin \delta_e \tag{11}$$

که در آن:

$$C_{L\delta} = \frac{6.13 \cdot A_{\rm e}}{A_{\rm e} + 2.25} \tag{12}$$

جریان لیفت باعث القای مقداری درگ در جهت جریان ورودی سکان میشود که با رابطه (13) بیان می گردد:

$$D = \frac{1}{2}\rho A_t C_{\rm Di} U_{\rm rad}^2 \sin \delta_{\rm e}$$
 (13)

که در آن:

$$C_{Di} = \frac{C_{L\delta}^2}{\pi A_0} \tag{14}$$

مقاومت اصطکاکی سکان بر اثر درگ اصطکاکی سکان نیز به صورت رابطه (15) فرمول بندی میشود:

$$R = \frac{1}{2} \rho S_{\rm wT} C_{\rm TR} (U_{\rm rad} \cos \delta_{\rm e})^2$$
 (15)

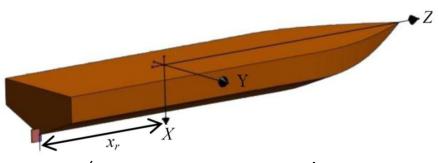
نیروی نرمال وارد بر سکان بر اثر ضریب درگ جانبی $C_N=1.8$ عبارت است از:

$$Y_N = \frac{1}{2} \rho A_{\rm r} C_N U_{\rm rad} \sin \delta_e |U_{\rm rad} \sin \delta_e|$$
 (16)

معادلات زیر نیروها و ممانهای ایجاد شده توسط سکان را بیان می-کنند:

$$\begin{split} X_{rud} &= -R \cos \delta - D \cos \delta_H - Y_N \sin \delta - L \sin \delta_H \\ Y_{rud} &= (-R \sin \delta - \sin \delta_H + \cos \delta (1 + a_h)) \cdot \cos \phi_F \\ Z_{rud} &= (-R \sin \delta - \sin \delta_H + \cos \delta (1 + a_h)) \cdot \sin \phi_F \\ M_{rud} &= X_{rud} \cdot z_r + Z_{rud} \cdot x_r \end{split} \tag{17}$$

4- مشخصات شناور نمونه


برای بررسی صحت درستی برنامه عددی نوشته شده برای شبیه سازی مانور شناور تندرو لازم است که شناوری در نظر گرفته شود که نتایج تست مانور آن موجود باشد. از همین رو شناوری که مشخصات آن در جدول $\bf 8$ و فرم بدنه آن در شکل $\bf 5$ آورده شده است، جهت شبیه سازی مانور شناور پروازی در نظر گرفته شده است و این انتخاب به این دلیل بوده است که این شناور به صورت تجربی مورد تست قرار گرفته است و نتایج آن در مراجع آورده شده است.

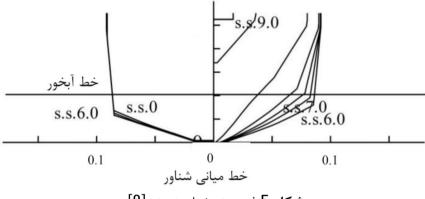
در ادامه انواع مانورهای مختلف برای این شناور مورد بررسی قرار گرفته و رفتار شناور تجزیه و تحلیل شده است.

5- شبیه سازی حرکت در مسیر مستقیم

سناریو در نظر گرفته شده جهت این مانور به این ترتیب است که مطابق با شکل 6 زاویه سکان صفر درجه قرار داده شده است. سرعت شناور در محدوده پروازی در حد 5 متر بر ثانیه تنظیم شده است. نمودار مسیر طی شده مطابق با شکل 7 می باشد.

همانطور که از قبل نیز انتظار میرفته است، سرعت طولی شناور ثابت

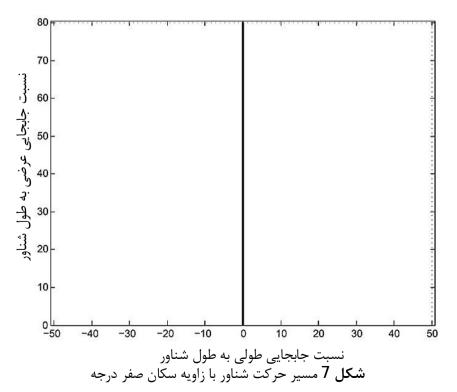
 (x_r) شکل 4 فاصله طولی سکان از مرکز ثقل شناور


باقیمانده و هیچگونه سرعت جانبی وجود ندارد. لذا رفتار شبیهسازی شده توسط برنامه تهیه شده که در شکل 7 نشان داده شده است، با آنچه در واقعیت انتظار میرود تطابق کامل نشان داده است. علاوه بر این نتایج این تست موید این مطلب است که شناور مورد بررسی از پایداری جهتی مناسبی نیز برخوردار بوده است.

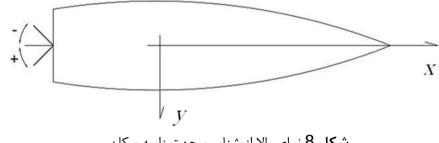
6- شبیه سازی مانور تغییر مسیر

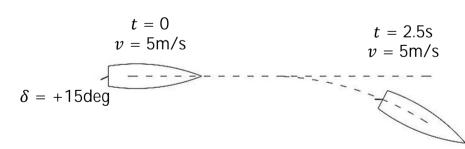
مانور تغییر مسیر شناورها، جهت تعیین میزان اثرپذیری شناور از زاویه سکان به کار گرفته میشود. جهت انجام مانور تغییر مسیر شناورها به این صورت عمل میشود که، زمانی که شناور با سرعت ثابت در مسیر مستقیم در حال

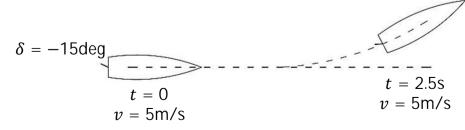
جدول 3 مشخصات شناور نمونه[8]


مقدار	توضيحات	پارامتر
0/93	طول شناور (متر)	L
0/18	عرض شناور(متر)	B
0/03	آبخور شناور(متر)	T
3/08	جرم شناور(کیلوگرم)	M
4	تريم(درجه)	τ
10	ددرايز(درجه)	β
0/33	موقعیت طولی مرکز ثقل از پاشنه(متر)	L_{cg}

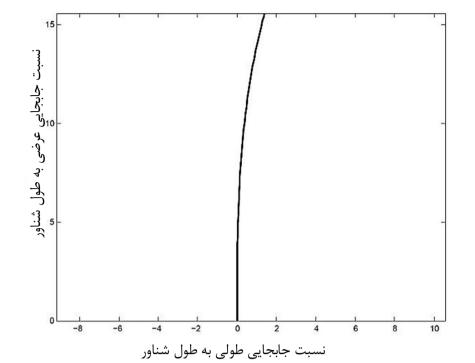
شكل 5 فرم بدنه شناور نمونه [8]

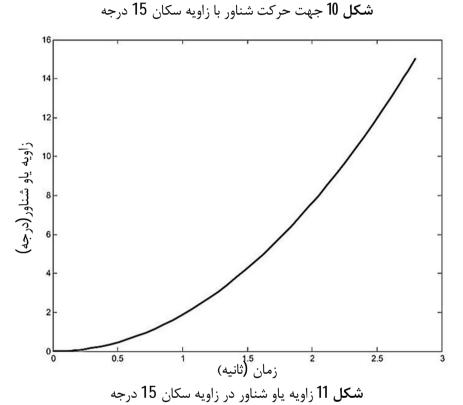

شکل 6 سناریوی حرکت شناور در مسیر مستقیم

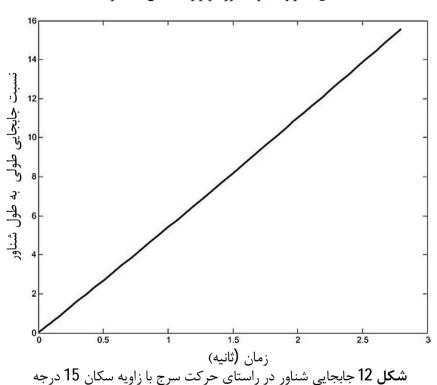

حرکت میباشد، سکان شناور به یک مقدار مشخص منحرف شده و بعد زاویه سكان برابر با اين مقدار ثابت باقى مىماند. شناور به حركت خود در اين حالت با زاویه سکان ثابت ادامه می دهد تا اینکه سر شناور منحرف شده و مقدار زاویه سر شناور برابر با زاویه سکان گردد.


در مانور تغییر مسیر، مدت زمان به طول انجامیده تا حصول زاویه سر شناور برابر با زاویه سکان، یادداشت گردیده و در نمودار جابجایی طولی شناور بر حسب زمان، مقدار جابجایی شناور در این زمان خوانده می شود. در شکل 8 نمای بالای شناور و زاویه سکان مثبت و منفی شناور جهت مانور تغییر مسیر نشان داده شده است. مانور تغییر مسیر هم برای زاویه مثبت و هم برای زاویه منفی سکان انجام میشود، که در شکل 9 نمای شماتیکی از آن و نحوه اجرای آن نشان داده شده است. جهت انجام این مانور در این تحقیق، در این حالت سرعت اولیه شناور 5 متر بر ثانیه تنظیم شده است و زاویه سکان شناور برابر 15 درجه ¹ قرار داده شده و نرم افزار در این حالت اجرا گردیده و نمودار مسیر حرکت شناور در شکل 10 آورده شده است. نمودار یاو شناور (زاویه سر شناور) در حین این مانور، بر حسب زمان در شکل 11 آورده شده است و نمودار مقدار جابجایی طولی شناور بر حسب زمان در شکل 12 استخراج شده است. جهت درک بهتر نمودارها، برچسب کلیه نمودارها به صورت نسبت بی بعد بیان شده است و این نسبت بی بعد به صورت مقدار جابجایی شناور هم در راستای طولی و هم در راستای عرضی تقسیم بر طول کلی شناور میباشد. در نمودار یاو شناور نظیر ثانیهای که زاویه یاو شناور به 15 درجه ² رسیده است ثبت شده و با این زمان مد نظر در نمودار جابجایی طولی شناور در راستای حرکت سرج مقدار آن خوانده شده و تحت عنوان جابجایی شناور یادداشت شده است. به همین ترتیب همین روال برای زاویه سکان منفی 15 درجه تکرار گردیده است.

همانطور که در شکل11 می توان دید با قـرار دادن زاویـه سـکان شـناور برابر با 15 درجه در زمان 2/7 ثانیه، زاویه یاو شناور (زاویه سر شناور) بـه 15 درجه میرسد. در طی این مدت زمان شناور مسافتی 15 برابر طـول خـود را




شکل 8 نمای بالا از شناور و جهت زاویه سکان



شکل 9 نمای شماتیک از مانور تغییر مسیر شناور

طی کرده است که در صورت وجود یک حد مشخص در آیین نامههای طراحی مى توان صحت طراحى شناور را كنترل نمود.

7- شبیه سازی مانور چرخش و معتبرسازی نتایج

در بعضی شرایط (مانند جلوگیری از تصادم) شناور نیازمند دور زدن است و

 $^{1-\}delta = +15^{0}$ $2 - \psi = +15^{\circ}$

باید در حین مانور شناور از پایداری مناسبی برخوردار بوده، همچنین مقدار قطر دایره چرخش در حد قابل قبولی باشد. نحوه انجام این تست مانند شکل 13 به این صورت است که ابتدا شناور با سرعت ثابت در مسیر مستقیم شروع به حرکت میکند، سپس زاویه سکان به اندازه حداکثر (معمولاً 35 درجه) با بیشترین سرعت چرخانده میشود و تا زمانی که شناور یک دایره کامل (حداقل تا 540 درجه) طی نکرده است سکان در این زاویه باقی می-ماند. این آزمایش برای هر دو طرف چپ و راست شناور باید انجام شود. هنگامیکه شناور در حال دور زدن است، باید دایره چرخش کمتر از 540 درجه کامل گردد تا پارامترهای مهم مانور و تصحیحات لازم برای انحراف ایجاد شده توسط جریانهای دریایی یا باد انجام شوند.

جهت شبیه سازی این تست فرض شده است که شناور با سرعت 17 متر بر ثانیه متناظر با عدد فرود حرکتی 0/7 به شرایط پایدار رسیده و هیچ گونه عامل محیطی نیز در کار نمی باشد. سپس زاویه سکان به اندازه 15 درجه منحرف می شود. دایره دور زدن شبیه سازی شده مطابق با شکل 14 می باشد.

اطلاعات مفیدی که از شکل 14 بدست میآید به شرح زیر بوده است:

- ✓ میزان پیشروی شناور 25 برابر طول آن است.
- ✓ قطر تاكتيكال چرخش 10 برابر طول مدل است.
- ✓ میزان ترانسفر شناور در حد 15 برابر طول مدل است.

مانور دور زدن برای همین شناور در مرجع 8 دقیقاً با مدلی با همین مشخصات بدنه اصلی و شرایط سرعت و زاویه سکان یکسان مورد تست قرار گرفته است که از نتایج آن جهت اعتبارسنجی استفاده می شود. نتایج مذکور در منحنی شکل 15 با یکدیگر مقایسه شدهاند.

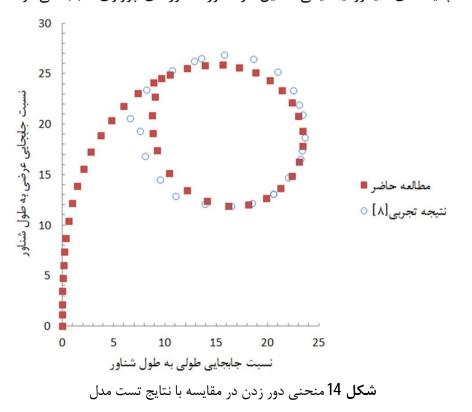
همانطور که در شکل 14 مشاهده می شود ماکزیمم مقدار نتیجه تجربی 27/88 و ماکزیمم مقدار عددی بدست آمده 25/82 می باشد که اختلاف برابر با 2/02 است و این مقدار 7/8 درصد مقدار عددی بدست آمده می باشد و این یعنی اینکه بین نتایج اختلاف در حدود کمتر از ده درصد وجود دارد، که بر روی منابع خطا می توان بحث نمود. اولاً در مدل سازی عددی مانور دور زدن شناور تندرو از ضرائب هیدرودینامیکی بیان شده در جدول 2 استفاده شده است، همانطور که بیان شد این ضرائب تنها برای شناورهای تندرو

قطر تاکتیکال درجه تغییر زاویه سر کشتی در 90 درجه تغییر زاویه سر کشتی از اویه سر کشتی در ور زدن شعاع دریفت مسیر تقریبی شروع چرخش سکان مرکز ثقل مسیر تقریبی

شكل 13 تست دور زدن

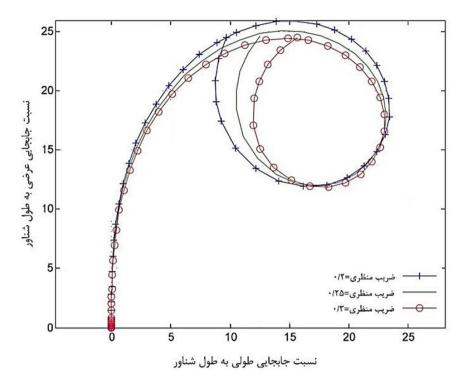
منشوری کاربرد دارند. ثانیاً پیشروی شناور به شدت تابعی از اثرات ویسکوزیته جریان است. درحالی که در مدلسازی عددی انجام شده اثرات ویسکوزیته جریان در نظر گرفته نشده است. ثالثاً اطلاعات سکان مورد استفاده در هنگام تست تجربی به طور دقیق جهت وارد نمودن اطلاعات سکان در هنگام مدلسازی عددی در دست نبوده و در ورودی نرم افزار سعی شده است ابعاد سکان در حد معمول وارد شود. با توجه به اثر مهم سکان در مانور شناور انتظار چنین اختلافی از قبل نیز وجود داشته است.

وارد کردن ویسکوزیته جریان در مدل یعنی حل معادلات کامل ناویر استوکس و محاسبه فشار اطراف شناور و بالطبع محاسبه نیرو اطراف آن، جهت انجام این کار نیازمند به یک دامنه حل بالا و مش زدن کل شناور و سطح آن می باشد، که این کار باعث صرف وقت و هزینه نسبتا بالایی می شود. نوآوری کار انجام شده در این است که با یک سطح محاسباتی کم و با صرف کمترین هزینه و وقت ممکن، بهترین نتیجه مدلسازی مانور را برای شناورهای تندرو بدست آورد که با نتایج تجربی فقط در حدود 10 درصد اختلاف دارد.


هندسه سکان و مشخص بودن ابعاد آن از مهمترین دغدغه های طراحان در مراحل اولیه سیکل طراحی شناور تندرو می باشد. یکی از اصلی ترین این مشخصه ها ضریب منظری سکان می باشد. میزان نیروی لیفت و یا درگ سکان برای یک زاویه حمله مشخص به شدت به ضریب منظری، که یکی از تعاریف آن تقسیم عمق و یا اسپن سکان بر طول وتر متوسط که در رابطه 18 نیز نشان داده شده است می باشد، وابستگی دارد. سکان های با ضریب منظری بالا میزان نیروی لیفت زیادی در زاویای حمله کوچکتر نسبت به سکان های با ضریب منظری پایین می دهند [18].

$$AR = \frac{T}{C} \tag{18}$$

شبیه سازی برای سکان با سه ضریب منظری متفاوت انجام شده است و نتایج در شکل 15 نشان داده شده است. شبیه سازی نشان می دهد که ضریب منظری پارامتر طراحی مهمی می باشد. ضریب منظری بالا منجر به قطر تاکتیکال کوچکتری در مانور دور زدن شناور می شود. ضریب منظری پارامتر قابل کنترلی در مرحله طراحی شناور می باشد و مانور پذیری شناور را با بهینه نمودن ضریب منظری، می توان بهبود بخشید.


8- نتيجه گيري

پدیدههای هیدرودینامیکی دخیل در مانور شناورهای پروازی سبب میشود

9- مراجع

- [1] Ye. Li, *The Simulation of ship maneuvering & course keeping with escort tus,* M.S. Thesis, Department of mechanical engineering, University of British Columbia, pp. 13-60, 2004.
- [2] ITTC Recommended procedures & guidelines, Testing and Extrapolation Methods Manoeuvrability Free Running Model Tests, pp. 1-10, 2005.
- [3] T.I. Fossen, A nonlinear unified state-space model for ship maneuvering & control in a seaway, *Journal of Bifurcation and Chaos*, pp. 1-28, 2005.
- [4] K.R. Suhrbier, An Experimental Investigation on the Roll Stability of a Semi-Displacement Craft at Forward Speed, *Symposium on Small Fast Warship and Security Vessels*, The Royal Institution of Naval Architects, Paper No.9, pp.133-142, 1978.
- [5] B. Deakin, Model tests to Assess The Manoeuvring of Planing Craft, *The International HISWA Symposium on Yacht Design and Yacht Construction*, pp. 21-32, 2005.
- [6] S.L. Toxopeus, J.A. Keuning, J.P. Hooft, Dynamic Stability of Planing Ships, *International Symposium and Seminar on The Safety of High Speed Craft*, London, UK, pp. 1-16, 1997.
- [7] M. Plante, S. Toxopeus, J. Blok, A. Keuning, Hydrodynamic Maneuvering Aspects Of Planing Craft, *International Symposium and Workshop on Forces Acting on a Manoeuvring Vessel*, Val de Reuil, FranceV, pp. 1-9, 1998.
- [8] T. Katayama, T. Taniguchi, H. Fujii, Y. Ikeda, Development Of Maneuvering Simulation Method For High Speed Craft Using Hydrodynamic Forces Obtained From Model Tests, 10th International Conference on Fast Sea Transportation FAST 2009, Athens, Greece, pp. 477-489, 2009.
- [9] E. Jahanbakhsh, R. Panahi, M.S. Seif, Catamaran Motion Simulation Based On Moving Grid Technique, *Journal of Marine Science and Technology*, Vol 17, No. 2, pp. 128-136, 2009.
- [10] M.R. Javanmardi, M.S. Seif, E. Jahanbakhsh, H. Sayyaadi, Trimaran Maneuvering Simulation, Based on a Three-Dimensional Viscous Free Surface Flow Solver, Proceeding of 6th *International Conference on High-Performance Marine Vehicles (HIPER'08)*, Naples, pp. 249-256, 2008.
- [11] S.L. Toxopeus, Deriving mathematical manoeuvring models for bare ship hulls using viscous flow calculations, *Maritime Research Institute* Netherlands/Delft University of Technology, pp. 1-9, 2007.
- [12] M. Araki, H. Sadat-Hosseini, Y. Sanda, K. Tanimoto, N. Umeda, Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data, *Ocean Engineering Journal* 51, pp. 63-84, 2012.
- [13] C.D. Simonsen, J.F. Otzen, C. Klimt, N.L. Larsen, Maneuvering predictions in the early design phase using CFD generated PMM data, *29th Symposium on Naval Hydrodynamics*, Gothenburg, Sweden, pp. 26-31 August 2012.
- [14] R. Lin, W. kuang, A fully nonlinear, dynamically consistent numerical model for ship maneuvering in a seaway, *Hindawi Publishing Corporation Modelling and Simulation in Engineering*, Article ID 356741, pp. 1-11,2011.
- [15] R. Lin, T. Smith, M. Hughes, Prediction of ship unsteady maneuvering in calm water by a fully nonlinear ship motion model, *Hindawi Publishing Corporation Modelling and Simulation in Engineering*, Article ID 356741, pp. 1-11, 2012.
- [16] H. Zhang, L. Nanji, Modeling and simulation of air cushion vehicle 6-DOF maneuverability, *International Journal of Digital Content Technology and its Applications (JDCTA)*, Volume6, Number12, pp. 214-222, July 2012.
- [17] E. M. Lewandowski, *The Dynamics of Marine Craft: Maneuvering and Seakeeping*, Advanced Series on Ocean Engineering-Volume 22, Copyright 2004 by World Scientific Publishing Co. Pte. Ltd, pp. 50-120, 2004
- [18] M.R. Patton, Evaluation of Dynamic Lift Coefficients of High Aspect Ratio Rudders and Control Surfaces, *United States Naval Academy Annapolis, Maryland, U.S.N.A. Trident Scholar project report*; pp. 1-134, 2004.

شکل 15 مدلسازی تاثیر ابعاد سکان بر منحنی دور زدن

که شبیهسازی مانور این نوع شناورها از طریق حل معادلات ریاضی بسیار پیچیده باشد. به نحوی که بسیاری از اثرات هیدرودینامیکی حاکم بر حرکت شناورهای پروازی همچنان ناشناخته بوده و قابل مدلسازی ریاضی نمیباشد. در سرعتهای بالا کویل حرکات شناور در صفحهی افق با حرکات در صفحه قائم و عرضی قابل توجه بوده و دیگر قابل صرف نظر نیست. لذا در این مقاله یک مدل ریاضی ارائه شده است که در آن اثرات زاویه غلتش عرضی، زاویه غلتش طولی و جابجایی عمودی شناور در معادلات مانور وارد شده است و معادلات ریاضی برای یک شناور نمونه حل شده و کیفیت مانور آن با نتایج تستهای مدل منتشر شده مقایسه شده است. مدل ارائه شده قادر است کیفیت مانور شناور تندرو را به خوبی نمایان کرده و نتایج عددی با نتایج تجربی تنها کمتر از ده درصد اختلاف از خود نشان داده است. در نهایت حساسیت سنجی بر روی ابعاد سکان و تاثیر آن بر روی مانور دایره چرخش شناور تندرو انجام شده است. با توجه به این که در این مدل ریاضی اثرات مرکز ثقل شناور و توزیع وزنی آن و همچنین زاویه تریم به عنوان ورودی برنامه داده شده است، اثر پارامترهای مذکور با توجه به این مدل ریاضی در مراحل طراحی شناور قابل تحقیق است. علاوه بر این در اختیار داشتن یک مدل ریاضی هر چند ساده که جهت مقاصد کنترل مسیر مورد استفاده قرار گیرد نیز در شناورهای پروازی از اهمیت فراوان برخوردار است که در این مقاله این دسته از معادلات فرمول بندی شده است.