

ماهنامه علمى پژوهشى

مهندسی مکانیک مدرس

mme.modares.ac.ir

یک روش نوین و جامع برای شکل دهی به کمک لیزر سطوح استوانهای با شعاع انحنای دلخواه

مهدی صفری *

استادیار، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک

* اراک، صندوق پستی:m.safari@arakut.ac.ir ،38181-41167

په بیدت شکل دهی به کمک لیزر، یک فرآیند شکل دهی انعطاف پذیر میباشد که نیاز به ابزار سخت یا نیروهای خارجی ندارد. در این مقاله، شکل دهی با لیزر سطوح استوانهای با شعاع انحنای دلخواه به صورت تحلیلی و تجربی مورد بررسی قرار می گیرد. از آنجایی که فرآیند شکل دهی با لیزر یک فرآیند شکل دهی با در فرآیند شکل دهی با لیزر، پارامترهای متغیری شامل توان لیزر، قطر پرتوی لیزر، سرعت اسکن لیزر و ابعاد بلانک اولیه هستند که مستقیما بر شکل نهایی قطعه تولید شده اثر می گذارند. همچنین علاوه بر پارامترهای ذکر شده در بالا، در فرآیند شکل دهی یک سطح استوانهای، یک پارامتر جدید یعنی تعداد خطوط تابش دهی به پارامترهای متغیر اضافه می شود. در نتیجه، پیچیدگی شکل دهی با لیزر یک سطح استوانهای بیشتر از یک خمکاری با لیزر ساده خواهد بود. در این مقاله یک روش تحلیلی جهت شکل دهی با لیزر سطوح استوانهای با شعاع انحنای دلخواه ارائه می شود. در روش ارائه شده، با در نظر گرفتن محدودیتهای دستگاه لیزر شامل توان لیزر، قطر پرتوی لیزر و سرعت حرکت لیزر، تعداد خطوط تابش دهی و فاصله بین شده، با در نظر گرفتن محدودیتهای دستگاه لیزر شامل توان لیزر، قطر پرتوی لیزر و سرعت حرکت لیزر، تعداد خطوط تابش دهی و فاصله بین شده، با در نظر گرفتن محدودیتهای دستگاه لیزر شامل توان لیزر، قطر پرتوی لیزر و سرعت حرکت لیزر، تعداد خطوط تابش دهی و فاصله بین شده، مورد بررسی و تأیید قرار می گیرد. نتایج تحلیلی و تجربی نشان می دهند که با استفاده از روش تحلیلی ارائه شده، سطوح استوانهای با هر شعاع انحنای دلخواه می توانند با دقت بسیار خوبی تولید می شوند.

اطلاعات مقاله

دريافت: 03 تير 1394

مقاله پژوهشی کامل

پذیرش: 21 مهر 1394 ارائه در سایت: 20 آبان 1394 کلید واژگان: شکلدهی با لیزر سطح استوانهای بررسی تئوری و تجربی

A novel and comprehensive method for laser forming of cylindrical surfaces with arbitrary radius of curvature

Mehdi Safari*

Department of Mechanical Engineering, Arak University of Technology, Arak, Iran. * P.O.B. 38181-41167 Arak, Iran, m.safari@arakut.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 24 June 2015 Accepted 13 October 2015 Available Online 11 November 2015

Keywords:
Laser Forming
Cylindrical surface
Theoretical and Experimental Investigation

ABSTRACT

Laser forming is a flexible forming process that needs no hard tooling or external forces. In this paper, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated analytically and experimentally. As the laser forming process is a die-less forming process, production of a desired shape from initial blank is very difficult with this process. Because in the laser forming process, there are some variable parameters such as laser power, laser beam diameter, laser scanning speed and dimensions of initial blank that directly affect the final shape of the produced part. Also, in addition to the above mentioned parameters, in the laser forming process of a cylindrical surface, a new parameter says the number of irradiating lines is added to variable parameters. Therefore complexity of laser forming of a cylindrical surface will be more than a simple laser bending. In this paper, an analytical method for laser forming of cylindrical surfaces with arbitrary radius of curvature is proposed. In the proposed method, with the aim of technical determining limitations of laser machine such as laser power, laser beam diameter and laser scanning speed, the number of irradiating lines and the distance between neighboring lines are proposed for production of cylindrical surfaces with arbitrary radius of curvature. Also, using experimental tests the performance and accuracy of the proposed method are investigated and verified. Analytical and experimental results show that with the proposed analytical method, cylindrical surfaces with any arbitrary radius of curvature can be produced with very good

نیازی به ابزار یا نیروهای خارجی نمیباشد. خمکاری با لیزر در بسیاری از فرایندهای ورقکاری از جمله خمکاری در صفحه و خارج از صفحه ورق، تصحیح اعوجاجهای ناخواسته حاصل از سایر فرایندهای شکلدهی ورقهای

1- مقدمه

فرایند خمکاری با لیزر ۱، یک فرایند شکل دهی انعطافیذیر می باشد که در آن

1- Laser bending

فلزی و تنظیم قطعات الکترونیکی در جایشان مورد استفاده قرار می گیرد. در فرایند خمکاری با لیزر، ورق تحت تابش یک پرتوی لیزر غیر متمرکز 1 قرار مى گيرد. بدين وسيله دماى سطح ناحيه تحت تابش دهى سريعا افزايش يافته و با حرکت پرتوی لیزر به نواحی مجاور، این ناحیه سریعا سرد میشود. در مرحله تابشدهی و در صورتی که کرنشهای حرارتی ایجاد شده در ناحیه حرارت دیده از حد الاستیک تجاوز کنند تبدیل به کرنشهای پلاستیک فشاری میشوند. در مرحله سرد شدن، ناحیه حرارت دیده دچار انقباض شده و بدین ترتیب میتوان یک ورق فلزی را بدون ابزار و تنها به کمک تنشهای حرارتی شکل دهی کرد. نامبا در سال 1986 برای اولین بار از پرتوی لیزر به عنوان ابزاری برای شکل دهی ورقهای فلزی استفاده کرد[1]. پس از نامبا، بسیاری از محققین از پرتوی لیزر به عنوان ابزاری برای شکل دهی استفاده کردند و تحقیقات بسیاری را در این زمینه انجام دادند. در سال 1993 گایگر و ولرتسن فرایند خمکاری با لیزر را بر اساس پارامترهای هندسی ورق و پرتوی لیزر به سه مکانیزم اصلی گرادیان دمایی 2 ، کمانشی 3 و کوتاه شدگی 4 تقسیم کردند [2]. همانند سایر تکنیکها، شکلدهی با لیزر نیز محدودیت دارد و محدودیتش این است که تغییر شکل پلاستیک ایجاد شده در اثر حرارت القا شده از لیزر کم میباشد و بنابراین میبایستی جهت دستیابی به شکل مطلوب، سیکلهای حرارتی یا به عبارت دیگر تعداد پاسهای تابشدهی زیاد شوند. در سال 2001، چنگ و یائو [3]، اثرات سرد شدگی را در شکل دهی های چند پاسه بصورت عددی بررسی کردند. آنها راندمان شکل دهی را در مشخصههای جابجایی نازل و فشار هوای سرد شده در شکل دهی های چند پاسه بررسی کردند. نتایج نشان داد که سرد شدن بطور قابل ملاحظهای زمان کلی شکل دهی را در اسکنهای چند پاسه کاهش میدهد و این به علت کاهش زمان مورد نیاز بین پاسهای متوالی است. در سال 2006، یک مطالعه عددی بر روی فرایند شکل دهی با لیزر توسط شن و همکارانش [4]، انجام شد که در آن دو پرتوی لیزر به طور همزمان و در امتداد دو خط موازی حرکت می کردند. نتایج بدست آمده نشان دادند که تغییر شکل پلاستیک ایجاد شده به وسیله پرتوهای همزمان، بزرگتر از حالتی است که پرتوها به صورت تک تک و یکی پس از دیگری حرکت می کردند. البته شرط لازم برای نتیجه فوق این بود که فاصله دو خط اسکن زیاد نباشد. همچنین در سالهای 2006 و 2007، شن و همکارانش [6,5]، اثرات بازههای زمانی و همپوشانی زاویه خمش در اسکنهای چند پاسه را با استفاده از اجزای محدود بررسی کردند. نتایج آنها نشان داد که تغییر شکل پلاستیک ایجاد شده در ورق، با کاهش فاصله زمانی بین پاسهای متوالی افزایش مییابد. همچنین هر چه میزان همپوشانی پاسهای متوالی بیشتر شود با توجه به افزایش ناحیه پلاستیک، زاویه خمش نیز افزایش مییابد. از آنجایی که فرآیند شکل دهی با لیزر از جمله فرآیندهای شکل دهی بدون قالب می باشد لذا تولید قطعهای با هندسه مشخص در آن بسیار پیچیده است. زیرا در این فرآیند می بایستی پارامترهای لیزر و بلانک اولیه طوری تنظیم شوند که منجر به تولید قطعهای با هندسه مشخص شوند. با توجه به وجود چندین پارامتر متغیر، پیچیدگی دستیابی به یک زاویه خمش مشخص در یک فرآیند خمکاری ساده به کمک لیزر بسیار زیاد میباشد. در این زمینه تحقیقاتی توسط سایر محققین انجام شده است. از جمله آنکه در سال 1389 حسین پور و همکارانش در یک بررسی تحلیلی و تجربی، پارامترهای مؤثر در فرایند

خمش ورقهای فلزی با لیزر را مورد مطالعه قرار دادند [7]. نتایج آنها نشان داد که پارامترهای توان لیزر، سرعت حرکت پرتو لیزر، عرض پالس و قطر پرتو لیزر به ترتیب بیشترین تأثیر را بر زاویه خمش ورق دارند. در سال 2011 حسین پور و همکارانش در یک مطالعه آماری، اثر پارامترهای فرایندی مانند جنس ورق، توان لیزر، قطر پرتو، سرعت اسکن، ضخامت ورق، تعداد پاسهای تابش دهی و مدت زمان اعمال پرتوی لیزر را بر زاویه خمش با استفاده از یک لیزر نئودمیم – یاگ پالسی بررسی کردند [8]. نتایج آنها نشان داد که پارامترهای تعداد پاس تابشدهی، جنس ماده، ضخامت ورق، سرعت اسکن و قطر پرتو لیزر بیشترین اثر را بر زاویه خمش ورق داشتند. همچنین پارامترهای توان لیزر و مدت زمان اعمال پرتوی لیزر اثر کمتری بر زاویه خمش داشتند. در مقاله آنها رابطه بین پارامترهای لیزر و زاویه خمش ورق به خوبی و با استفاده از آنالیز رگرسیون به دست آمد و پارامترهای بهینه جهت دستیابی به بیشترین زاویه خمش تعیین گردیدند. در سال 2008 چاندرا جا و همکارانش اثرات لبه ای و پدیده خمش چند منحنی را در فرایند خمكاري با ليزر فولاد زنگ نزن 304 مطالعه كردند [9]. نتايج آنها نشان داد که هر دوی اثرات لبه ای و پدیده خمش چند منحنی بسیار وابسته به سرعت اسكن مىباشند. همچنين پديده خمش چند منحنى با افزايش تعداد دفعات تابشدهی کاهش مییابد. در سال 2013 ظهرانی و همکارانش [10]، به صورت تجربی اثر پارامترهای فرآیند شامل قطر پرتو، توان لیزر، سرعت اسکن، ضخامت ورق، تعداد پاسهای تابش دهی و موقعیت مسیر تابشدهی بر روی ورق را بر اثرات لبهای و پیچیدگی طولی بررسی کردند. آنها با استفاده از تحلیل آماری و طراحی آزمایش، آزمایشهای تجربی را انجام داده و سپس مدلهای تجربی را بر مبنای روش پاسخ سطحی ٔ توسعه دادند. نتایج آنها نشان داد که پارامترهای تعداد پاسهای تابشدهی، ضخامت ورق، سرعت اسکن و توان لیزر مستقیما بر اثرات لبه ای اثر گذار هستند.

در فرآیند شکلهی به کمک لیزر سطوح استوانهای نیاز به بیش از یک خط تابشدهی میباشد. در این شرایط علاوه بر پارامترهای متغیر موجود در فرآیند خمکاری ساده به کمک لیزر، تعداد خطوط تابشدهی به عنوان پارامتر متغیر جدید ظاهر میشود. پیداست که در این شرایط پیچیدگی دستیابی به یک سطح استوانهای مشخص بسیار پیچیده تر از دستیابی به یک زاویه خمش مشخص در یک فرآیند خمکاری ساده به کمک لیزر میباشد. با توجه به تحقیقات انجام شده توسط نویسنده، تا کنون گزارشی در این رابطه توسط سایر محققین ارائه نشده است.

در این مقاله، یک روش تحلیلی جهت شکل دهی با لیزر سطوح استوانهای با شعاع انحنای دلخواه ارائه می شود. در روش ارائه شده از مسیرهای تابش دهی خطی ساده استفاده می شود. در این روش با در نظر گرفتن محدودیتهای دستگاه لیزر شامل توان لیزر، قطر پرتوی لیزر و سرعت اسکن پرتوی لیزر، پارامترهایی مانند تعداد خطوط تابش دهی و همچنین فاصله بین آنها جهت دستیابی به سطح استوانهای با شعاع انحنای دلخواه پیشنهاد می شوند. همچنین به منظور بررسی و تأیید روش تحلیلی ارائه شده، آزمایش های تجربی جهت شکل دهی با لیزر سطوح استوانهای با شعاع انحنای دلخواه انجام می شوند. نتایج تجربی نشان دهنده این هستند که روش تحلیلی ارائه شده، دارای دقت بسیار خوبی در پیش بینی پارامترهای لازم جهت دستیابی به یک سطح استوانهای با شعاع انحنای دلخواه می باشد.

¹⁻ Defocused laser beam

²⁻ Temperature gradient mechanism (TGM)

³⁻ Buckling mechanism (BM)

⁴⁻ Upsetting mechanism (UM)

⁵⁻ Response surface methodology

2- كار تجربي

به منظور انجام آزمایش های تجربی از یک دستگاه لیزر دی اکسید کربن مدل رسی دبلیو 6^1 با حداکثر توان 150 وات و پرتوی پیوسته استفاده می شود. در تجهیزات تجربی، کلگی لیزر ثابت بوده و حرکت قطعه توسط یک میز با کنترل عددی انجام می شود. در شکل 1 تجهیزات تجربی مورد استفاده نشان داده شده است. قبل از انجام آزمایش های تجربی می بایستی میزان اتلاف توان لیزر در اثر انتقال پرتوی لیزر از لوله اصلی لیزر تا لنز انتهایی که درست قبل از قطعه کار قرار گرفته است بررسی شود. بدین منظور با استفاده از یک دستگاه توانسنج، توان لیزر درست پس از خروج از لوله اصلی لیزر و همچنین قبل از لنز انتهایی اندازه گیری می شود و بدین ترتیب میزان اتلاف توان لیزر در اثر انتقال پرتو مشخص می شود. در آزمایش های میزان اتلاف توان لیزر در این مقاله میزان اتلاف توان لیزر در حد بسیار ناچیز و قابل اغماض می باشد.

در شکل 2 دستگاه توان سنج مکن 2 مدل پی 100 مورد استفاده در آزمایشهای تجربی با دقت یک درجه نشان داده شده است. نمونههای مورد بررسی در کار تجربی از فولاد کم کربن با طول 100 میلیمتر، عرض 0.85 میلیمتر و ضخامت 0.85 میلیمتر تهیه میشوند. به منظور افزیش ضریب

Fig. 1 The equipment used in experimental tests **شکل 1** تجهیزات مورد استفاده در آزمایش های تجربی

جذب نمونه ها، سطح نمونه ها توسط گرافیت تیره می شوند. تغییر شکلها و انحنای سطوح استوانه ای تولید شده به کمک لیزر، توسط یک ماشین اندازه گیری مختصاتی (مدل ایسان ای ان سی 4565) اندازه گیری می شوند. در شکل 3 نمونه ای از قطعات استوانه ای تولید شده به کمک لیزر و با استفاده از روش ارائه شده، نشان داده شده است.

3- روش جدید برای تولید سطوح استوانه ای با شعاع انحنای دلخماه

اولین نکتهای که باید بدان دقت شود این است که پارامترهای توان لیزر، قطر پرتو و سرعت اسکن لیزر میبایستی با توجه به تجهیزات موجود انتخاب شده و مقادیر آنها دارای محدودیت میباشد. یکی از این محدودیتها رعایت دمای سطح ورق در محدوده پایین تر از دمای ذوب می باشد که توان لیزر و سرعت اسکن نیز با توجه به این محدودیت انتخاب می شوند. پیداست که هر چه توان لیزر بالاتر بوده و سرعت اسکن لیزر کمتر باشد شار حرارتی وارد شده به ورق نیز بیشتر می شود ولی در انتخاب حداکثر توان و حداقل سرعت تابشدهی میبایستی محدودیت حداکثر دمای مجاز سطح ورق در نظر گرفته شود. محدودیت دیگری که وجود دارد اینست که توان و سرعت اسکن لیزر شود. محدودیت دیگری که وجود دارد اینست که توان و سرعت اسکن لیزر

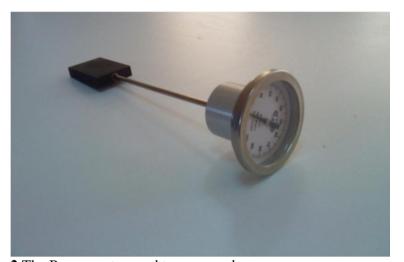


Fig. 2 The Power-meter used to measure laser power شکل 2 دستگاه توان سنج مورد استفاده برای اندازه گیری توان لیزر

Fig. 3 A sample of cylindrical parts produced by laser and using the proposed method شکل 3 نمونه ای از قطعات استوانه ای تولید شده به کمک لیزر و با استفاده از روش ارائه شده

³⁻ Coordinate Measuring Machine (CMM)

⁴⁻ Easson ENC-565

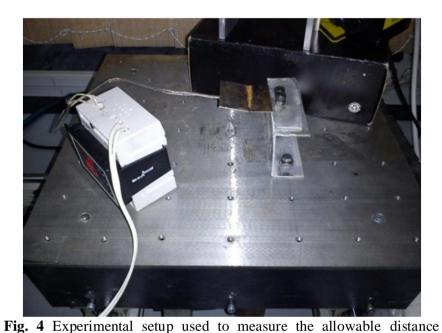
¹⁻ Reci laser- Model: W6

²⁻ Macken instruments- Model: P-100

طوری انتخاب شوند که شار حرارتی ورودی به ورق به اندازه کافی جهت ایجاد تغییر شکل پلاستیک باشد. پیداست که هر چه توان لیزر کمتر و سرعت اسکن لیزر بیشتر باشد شار حرارتی وارد شده به قطعه نیز کمتر می شود. در این مقاله محدوده پارامترهای توان لیزر و سرعت اسکن لیزر با توجه به اندازه گیری دما در سطح ورق محاسبه شده و مورد استفاده قرار می گیرند به نحوی که شار حرارتی وارد شده به قطعه به اندازه کافی جهت ایجاد تغییر شکل پلاستیک بوده و از طرفی هم دمای سطح ورق در محدوده پایین تر از دمای ذوب باشد.

به منظور بررسی و تعیین محدوده مجاز پارامترهای لیزر شامل توان لیزر، سرعت اسکن لیزر و قطر پرتوی لیزر به صورتی که اولا دمای سطح ورق در محدوده پایین تر از دمای ذوب می باشد و ثانیا شار حرارتی ورودی به ورق به اندازه کافی جهت ایجاد تغییر شکل پلاستیک باشد آزمایشهای تجربی مختلفی انجام شدند. در این آزمایش ها، یک ورق با جنس و ابعادی مشابه ورق های اصلی، تحت تابش دهی لیزر قرار گرفت. در هر آزمایش، با ثابت نگه داشتن دو پارامتر، پارامتر سوم تغییر داده شد و اثرات آن بر دمای سطح ورق و تعییر شکل پلاستیک ایجاد شده در ورق مورد بررسی قرار گرفت. در این مقاله دو معیار برای تعیین محدوده های مجاز در نظر گرفته شد. با توجه به اینکه جنس ورق های مورد استفاده، فولاد کم کربن می باشد لذا ماکزیمم دمای سطحی ورق نباید بیشتر از 800 درجه سانتیگراد باشد. همچنین معیار مورد استفاده برای تعیین حداقل شار حرارتی وارده به ورق جهت ایجاد تغییر شکل پلاستیک نیز بدین صورت تعیین گردید که حداقل زاویه خمش ایجاد شده در ورق پس از اعمال پرتوی لیزر باید 1 درجه باشد. بدین ترتیب محدوده مجاز برای هر یک از پارامترها تعیین گردید. به منظور اندازه گیری دما در خط تابش دهی از یک دستگاه ترموکوپل لیزری (مدل پی اس آی پی 310¹) و برای اندازه گیری زاویه خمش نیز از یک ماشین اندازه گیری مختصاتی (مدل ایسان ای ان سی 565) استفاده گردید.

در زمینه حداکثر تعداد خطوط تابشدهی نیز محدودیت وجود دارد. نکته بسیار مهم و کلیدی در رابطه با تعداد خطوط تابش دهی اینست که فاصله بین دو خط تابش دهی مجاور به اندازهای باشد که هر یک از خطوط تابش دهی به صورت مستقل بر تغییر شکل نهایی قطعه اثر بگذارند و یک خط تابش دهی تحت تأثیر حرارت تولید شده در خط تابش دهی مجاور نباشد. مشخص است که در تابش دهی ورق فلزی در امتداد یک خط تابش دهی مشخص، حرارت وارد شده به ورق به خاطر هدایت حرارتی موجود در ورق به اطراف خط تابش دهی منتقل می شود. در این حالت، در صورتی که خط تابش دهی مجاور در فاصله ای قرار گیرد که تحت تأثیر حرارت ناشی از خط تابش دهی اول باشد اثری که بر تغییر شکل نهایی قطعه می گذارد مستقلا ناشی از حرارت تولید شده در خودش نیست و حرارت تولید شده در خط تابش دهی اول نیز در آن تأثیر گذار است. در این حالت بررسی اثر تعداد خطوط تابش دهی بر تغییر شکل نهایی ورق بسیار مشکل شده و پیچیدگی فرآیند بسیار بیشتر می شود. به منظور برطرف کردن این مشکل همانطور که قبلا نیز اشاره شد لازم است که فاصله بین دو خط تابش دهی مجاور طوری انتخاب شود که تحت تأثیر حرارت یکدیگر قرار نگیرند. بدین منظور در این پژوهش، تست های تجربی فراوانی انجام شده و فاصله مجاز بین دو خط تابش دهی مجاور تعیین می شود.


در شکل 4 تجهیزات تجربی مورد استفاده جهت اندازه گیری فاصله

مجاز بین خطوط تابش دهی مجاور نشان داده شده است. حال با توجه به تعیین پارامترهای توان لیزر، سرعت اسکن لیزر و تعداد خطوط تابش دهی مجاز، این سوال اساسی پیش میآید که راهکار مناسب جهت دستیابی به سطح استوانهای با هر شعاع انحنای دلخواه چیست؟ به منظور پاسخگویی به این سؤال می بایستی روند ارائه شده در ادامه این بخش انجام شود.

در مرحله اول باید یک سطح استوانه ای با حداکثر انحنای قابل دستیابی در یک مرحله تابشدهی و با توجه به الگوی تابشدهی نشان داده شده در شکل 5 تولید شده و انحنای آن اندازه گیری شود. دلیل اینکه جهت حرکت مسیرهای متوالی، مخالف یکدیگر میباشد متعادل کردن شرایط حرارتی در نقاط ابتدایی و انتهایی مسیرهای تابش دهی می باشد.

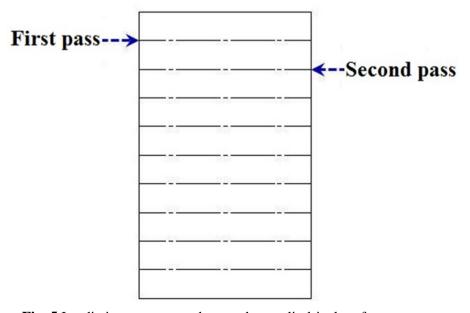
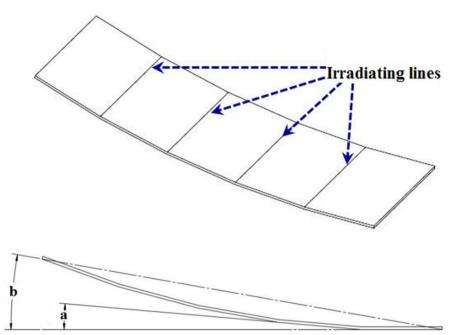
همچنین همانطور که در شکل 5 نشان داده شده است تابش دهی ورق از یک لبه آن و در امتداد خط تابش دهی آغاز شده و به ترتیب در خطوط تابش دهی بعدی به سمت لبه دیگر ورق ادامه می یابد. در این حالت هنگامی که ورق در امتداد پاس اول، تابش دهی می شود بخشهای دیگر در امتداد پاسهای دوم تا انتهای ورق در لبه ی دیگر تحت تأثیر تابش دهی خط اول قرار نمی گیرند.

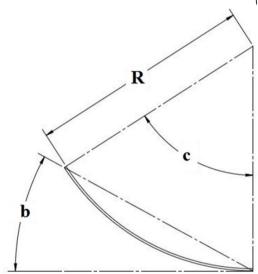
هنگامی که ورق در پاس دوم تابش دهی می شود فقط پاس اول که قبلا تابش دهی شده است تحت تأثیر آن قرار گرفته و خطوط سوم تا انتها تحت

between adjacent irradiating lines

مکل 4 تجهیزات تجربی مورد استفاده جهت اندازه گیری فاصله مجاز بین خطوط

شکل 4 تجهیزات تجربی مورد استفاده جهت اندازه گیری فاصله مجاز بین خطوط تابش دهی مجاور


Fig. 5 Irradiating pattern used to produce cylindrical surface شكل 5 الگوى تابش دهى مورد استفاده جهت توليد سطح استوانه اى

1- PSIP 310

Fig. 6 Schematic of the relationship between final bending angle of plate, bending angle in each irradiating line and also the number of heating lines in the pattern with parallel irradiating lines

شکل 6 شماتیک رابطه بین زاویه خمش نهایی ورق، زاویه خمش در هر خط تابش دهی و همچنین تعداد خطوط تابش دهی در الگوی تابش دهی با خطوط تابش دهی موازی هم

Fig. 7 Schematic of created curvature in the plate as a circular sector after irradiating with parallel heating lines

شکل 7 شماتیک انحنای ایجاد شده در ورق به صورت قطاعی از دایره در اثر تابش دهی توسط خطوط تابش دهی موازی

قابل توجه اینست که در تعیین مقدار پارامتر a در رابطه (2)، ابعاد اولیه ورق و جنس ورق در نظر گرفته شده اند و رابطه (4) می تواند برای ورقهایی با هر ابعاد و جنسی مورد استفاده قرار بگیرد. به عبارتی می توان گفت که روش ارائه شده در این مقاله مستقل از جنس و ابعاد اولیه ورق می باشد.

4- نتايج و بحث

در ابتدای این بخش، نتایج مربوط به محدوده مجاز برای پارامترهای توان لیزر، سرعت اسکن لیزر و قطر پرتوی لیزر برای تولید سطوح استوانهای ارائه می گردند.

در جدول 1 با ثابت نگه داشتن سرعت اسکن برابر با 150 میلیمتر بر دقیقه و قطر پرتوی لیزر برابر با 1 میلیمتر، تغییرات دمای سطح و همچنین زاویه خمش ورق متناسب با تغییر توان لیزر ارائه گردیده است. در جدول 2 تغییرات دمای سطح ورق و زاویه خمش آن متناسب با تغییرات سرعت اسکن در شرایطی که توان لیزر برابر با 120 وات و قطر پرتو برابر با 1 میلیمتر و ثابت هستند نشان داده شده است. همچنین در جدول 3 با توان لیزر وات و سرعت اسکن وات و سرعت اسکن میلیمتر بر دقیقه ثابت، تغییرات دمای سطح و

تأثیر قرار نمی گیرند. با این روش با جابجایی ورق در ارتفاع که باعث تغییر قطر و نهایتا انرژی وارده به ورق می گردد مقابله می شود. همچنین در انجام آزمایشها از لنزهای با فاصله کانونی زیاد استفاده می شود تا تغییرات احتمالی ارتفاع ورق تأثیر کمتری بر قطر آن داشته باشند و انرژی وارده به ورق تقریبا یکسان باشد. به منظور دستیابی به سطح استوانه ای با بیشترین انحنا باید پارامترهای فرایند و لیزر در بهینه ترین مقادیر خود مورد استفاده قرار بگیرند. بر این اساس حداکثر تعداد خطوط تابش دهی متناسب با قطر یرتوی لیزر، طول ورق تحت تابش دهی و فاصله مجاز بین دو خط تابش دهی مجاور انتخاب می شود. توان لیزر، قطر پرتوی لیزر و سرعت تابش دهی نیز متناسب با محدودیت های دستگاه لیزر انتخاب میشوند. البته در انتخاب حداقل و حداکثر توان و همچنین حداقل و حداکثر سرعت تابش دهی مجاز باید محدودیتهای مطرح شده در بالا در رابطه با حداقل مقدار شار حرارتی جهت ایجاد تغییر شکل پلاستیک و همچنین ماکزیمم مقدار دمای سطح ورق نیز در نظر گرفته شوند. با توجه به انتخاب پارامترهای بهینه، می توان یک سطح استوانه ای با حداکثر انحنای قابل دستیابی تولید کرد. پس از تولید سطح استوانه ای یک فرض اساسی مطرح می شود و آن اینست که در الگوی تابش دهی با خطوط تابش دهی موازی هم (شکل 5)، به شرط رعایت حداقل فاصله مجاز بین خطوط تابش دهی مجاور، زاویه خمش ایجاد شده در تابش دهی تمامی خطوط تابش دهی یکسان میباشد.

با در نظر گرفتن این فرض و با توجه به شکل 6 رابطه ای بین زاویه خمش نهایی ورق و زاویه خمش در هر خط تابش دهی و همچنین تعداد خطوط تابش دهی ارائه می شود. فرض می شود که همانند شکل 6 زاویه خمش در هر خط تابش دهی a بوده و همچنین تعداد خطوط تابش دهی نیز خمش در هر خط تابش دهی a بوده و همچنین تعداد خطوط تابش دهی نیز خمش در هر خط باشد. همانطور که مشاهده می شود زاویه خمش نهایی ورق a می باشد. با توجه به روابط هندسی موجود در شکل a می توان رابطه a را ارائه کرد:

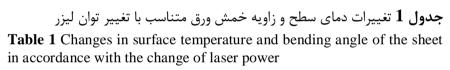
$$b = \frac{1}{2}N \times a \tag{1}$$

فرض دیگری که می بایستی در نظر گرفته شود اینست که همانطور که در شکل 7 نشان داده شده است انحنای ایجاد شده در سطح استوانه ای، قطاعی از دایره باشد.

با توجه به شکل 7 می توان رابطه (2) را بین زاویه مرکزی قطاع، شعاع ... قطاع (شعاع استوانه ای) و زاویه خمش نهایی ورق ارائه کرد. $c = 2 \times b$

با توجه به رابطه (2)، زاویه قطاع دایروی حاصله، دو برابر زاویه خمش نهایی ورق می باشد. از طرفی با توجه به شکل 7 و روابط هندسی داریم:

$$L = R \times c \tag{3}$$


در رابطه (3)، L طول قطاع دایروی می باشد که در واقع همان طول اولیه ورق است. بنابراین با توجه به روابط (1)، (2) و (3) می توان رابطه (4) را ارائه نمود.

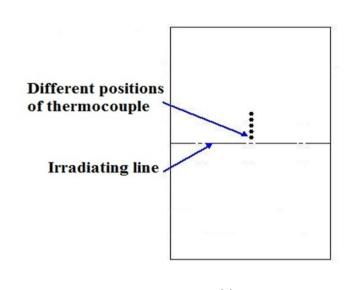
$$L = R \times N \times a \tag{4}$$

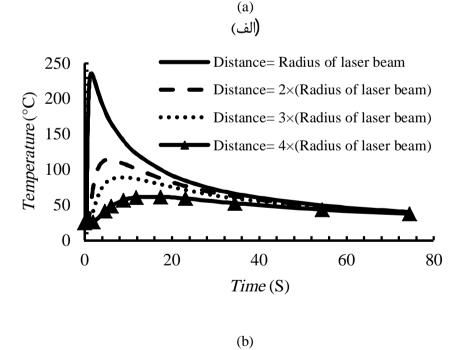
رابطه (4) بدین معناست که با معلوم بودن مقادیر طول اولیه ورق، زاویه خمش در هر خط تابش دهی و همچنین شعاع انحنای مطلوب در تولید یک سطح استوانه ای، میتوان تعداد خطوط تابشدهی لازم جهت دستیابی به شعاع انحنای مطلوب را تعیین کرد. توجه به این نکته ضروری میباشد که زاویه خمش در هر خط تابشدهی از سطح استوانهای، با داشتن حداکثر میزان انحنای قابل دستیابی و با توجه به رابطه (1) بدست آمده است. نکته میزان انحنای قابل دستیابی و با توجه به رابطه (1) بدست آمده است. نکته

زاویه خمش ورق متناسب با تغییرات قطر پرتو دیده می شود.

همانطور که از جدول 1 مشاهده می شود در توان 60 وات زاویه خمش ایجاد شده در ورق کمتر از 1 درجه می باشد بنابراین حداقل میزان توان لیزر 800 باید 80 وات باشد. همچنین در توان 140 وات، دمای سطح ورق از درجه سانتیگراد بیشتر می شود و مشخص می شود که محدوده بالایی توان ليزر نيز 120 وات است. در جدول ديده مي شود كه بيشترين مقدار زاويه خمش ورق در محدوده مجاز در توان 120 وات اتفاق می افتد. بنابراین بهترین مقدار توان لیزر برای انجام آزمایش ها، 120 وات می باشد. در جدول 2 دیده میشود که برای سرعت 100 میلیمتر بر دقیقه دمای سطح ورق بیشتر از 800 درجه سانتیگراد شده و همچنین برای سرعت 250 میلیمتر بر دقیقه زاویه خمش ورق کمتر از 1 درجه می شود. بنابراین محدوده سرعت اسكن نيز تعيين شده و همانطور كه از جدول 2 مشخص است بهينه ترين سرعت اسكن 150 ميليمتر بر دقيقه مي باشد. از جدول 3 نتيجه گيري مي شود که در قطر پرتوی 2 میلیمتر زاویه خمش ورق کمتر از 1 درجه شده و از طرف دیگر در قطر پرتوی 0.5 میلیمتر دمای سطح ورق بیشتر از درجه سانتیگراد می شود. بنابراین محدوده قطر پرتوی لیزر نیز مشخص می شود و همانطور که از جدول 3 پیداست، بهینه ترین قطر پرتوی لیزر 1 میلیمتر می باشد. در ادامه این بخش، نتایج حاصل از بررسی تجربی حداقل فاصله مجاز بین یک خط تابش دهی و خط تابش دهی مجاور آن، به طوری که تحت تأثیر حرارت تولید شده در خط تابش دهی مجاور قرار نگیرد ارائه می شود. تجهیزات تجربی و روش مورد استفاده برای این آزمایشها قبلا در شکل 4 نشان داده شده است. به منظور بررسی حداقل فاصله مجاز، آزمایشهایی با

زاویه خمش (Degrees)	دما (°C)	توان (Watts)
0.82	300	60
1.24	530	80
1.93	680	100
2.34	799	120
2.74	930	140


جدول 2 تغییرات دمای سطح و زاویه خمش ورق متناسب با تغییر سرعت اسکن Table 2 Changes in surface temperature and bending angle of the sheet in accordance with the change of scanning speed


زاویه خمش (Degrees)	دما (°C)	سرعت اسكن (mmmin ⁻¹)
3.42	1210	50
2.81	987	100
2.34	802	150
1.63	580	200
0.92	355	250

جدول 3 تغییرات دمای سطح و زاویه خمش ورق متناسب با تغییر قطر پرتو Table 3 Changes in surface temperature and bending angle of the sheet in accordance with the change of beam diameter

دما (°C)	قطر پرتو (mm)
882	0.5
801	1
640	1.5
400	2
	882 801 640

شرایط مشابه آزمایشهای تولید سطوح استوانه ای (شامل جنس و ابعاد ورق، شرایط مشابه آزمایشهای تولید سطح ورق و پارامترهای لیزر) انجام می شوند. سپس در شرایطی که حداکثر شار حرارتی در اثر تابش دهی لیزر به ورق وارد میشود یعنی در حداقل سرعت اسکن لیزر و حداکثر توان لیزر، ورق تحت تابش دهی لیزر در امتداد یک خط مستقیم قرار میگیرد. در این شرایط همانطور که در شکل 8-الف نشان داده شده است یک عدد ترموکوپل نوع کی در یک نقطه طولی مشخص و در فواصل عرضی مختلفی از خط تابش دهی قرار گرفته و نمودار حرارتی نقاط مختلف را ثبت می نماید. در شکل 8- ب نمودار حرارتی مربوط به موقعیت های مختلف ترموکوپل که در شکل 8- الف دیده میشوند نشان داده شده اند. به منظور بررسی پارامتریک شکل 8 – الف دیده میشوند نشان داده شده اند. به منظور بررسی پارامتریک ترموکوپل بر حسب شعاع پرتوی لیزر در نظر گرفته شده اند. همانطور که از شکل 8- ب دیده می شود در نقطه ای که در فاصله ای به اندازه دو برابر قطر پرتوی لیزر نسبت به خط تابش دهی قرار گرفته است اثرات حرارتی ناشی از تابش دهی لیزر بسیار کم میباشد. بنابراین میتوان گفت که در صورتی که ترابش دهی لیزر بسیار کم میباشد. بنابراین میتوان گفت که در صورتی که تابش دهی لیزر بسیار کم میباشد. بنابراین میتوان گفت که در صورتی که تابش دهی لیزر بسیار کم میباشد. بنابراین میتوان گفت که در صورتی که تابش دهی لیزر بسیار کم میباشد. بنابراین میتوان گفت که در صورتی که

Fig. 8 Allowable distance between adjacent irradiating lines, a-Schematic of various positions of the thermocouple from irradiating line, b- The diagram of transferred heat to adjacent points with different displacements related to irradiating line

(ب)

 $\frac{\mathbf{6}}{\mathbf{6}}$ فاصله مجاز بین خطوط تابش دهی مجاور، الف - شکل شماتیک از موقعیت های مختلف ترموکوپل نسبت به خط تابش دهی، ب - نمودار حرارت منتقل شده به نقاط مجاور خط تابش دهی در فواصل مختلف

یک خط تابش دهی در مجاورت خط تابش دهی نشان داده شده و با فاصله ای به اندازه دو برابر قطر پرتوی لیزر باشد تحت تأثیر حرارت ناشی از خط تابش دهی اول قرار نمی گیرد. با توجه به نتیجه شکل 8 می توان اینگونه استنباط نمود که زاویه خمش ورق در هر خط تابش دهی ثابت می باشد. به منظور بررسی این موضوع ورقی با طول 100 میلیمتر، عرض 60 میلیمتر و ضخامت 0.85 میلیمتر تحت تابش دهی لیزر با توان 120 وات، سرعت اسکن 150 میلیمتر بر دقیقه و قطر پرتوی 1 میلیمتر قرار گرفت.

در این آزمایش، تعداد 4 خط تابش دهی با فاصله 2 میلیمتر (دو برابر قطر پرتو) از یکدیگر در نظر گرفته شدند. سپس توسط ماشین اندازه گیری مختصاتی زاویه خمش در هر خط تابش دهی (پارامتر a در شکل b) و همچنین زاویه خمش کلی ورق پس از هر تابش دهی (پارامتر a در شکل b) اندازه گیری شدند. نتایج اندازه گیری در جدول a ارائه گردیده اند. آزمایش فوق به ازای پرتوهای لیزر با قطرهای مختلف تکرار شده و همین نتایج برای قطرهای دیگر نیز تکرار گردیده است. با توجه به این نتایج مشخص می شود که فاصله مجاز بین خطوط تابش دهی مجاور هم، به اندازه دو برابر قطر پرتوی لیزر می باشد. حال که فاصله مجاز بین خطوط تابش دهی مجاور هم، به اندازه دو ساونه ای با تعیین گردید می بایستی کارآیی روش ارائه شده در تولید سطوح استوانه ای با هر شعاع انحنای دلخواه بررسی شود.

به منظور بررسی عملکرد روش ارائه شده جهت تولید سطح استوانه ای با هر شعاع انحنای دلخواه، آزمایش های تجربی مختلفی انجام میشود. بدین منظور ورق هایی با طول 100 میلیمتر، عرض 60 میلیمتر و ضخامت 0.85 میلیمتر آماده می شوند. مقادیر حداکثر توان لیزر و حداقل سرعت تابش دهی مجاز، متناسب با حداکثر دمای سطح ورق به ترتیب 120 وات و 150 میلیمتر بر دقیقه انتخاب می شوند. همچنین حداکثر تعداد خطوط تابش دهی مجاز نیز با توجه به اینکه قطر پرتوی لیزر 1 میلیمتر بوده و طول ورق نیز 100 میلیمتر میباشد و با فرض اینکه حداقل فاصله بین خطوط تابش دهی مجاور 2 برابر قطر پرتوی لیزر باشد 49 خط تابش دهی تعیین میشود. با استفاده از مقادیر ارائه شده برای پارامترهای لیزر و فرایند یک سطح استوانه ای با حداکثر انحنای قابل دستیابی در یک پاس تابش دهی تولید میشود. شعاع انحنای این سطح استوانه ای برابر با 50 میلیمتر محاسبه میشود. همچنین با استفاده از رابطه (4) حداکثر مقدار زاویه خمش به ازای میشود. همچنین با استفاده از رابطه (4) حداکثر مقدار زاویه خمش به ازای

در ادامه و به منظور بررسی عملکرد روش ارائه شده آزمایشهای تجربی مختلفی جهت تولید سطوح استوانهای با شعاع های انحنای مختلف انجام می شوند. در این آزمایشها سعی در تولید سطوح استوانه ای با شعاعهای انحنای دلخواه می باشد. بدین منظور با جایگذاری شعاع انحنای مطلوب در رابطه (4)، تعداد خطوط تابش دهی مورد نیاز جهت تولید آن سطح استوانهای

جدول 4 نتایج اندازه گیری زاویه خمش در هر خط تابش دهی و زاویه خمش کلی ورق پس از هر تابش دهی

Table 4 The results of measurement of bending angle in each irradiating line and total bending angle of the sheet after each irradiation

زاویه خمش کلی ورق پس	زاویه خمش در هر خط	تعداد خطوط
از هر تابش دهی (Degrees)	تابش دهی (Degrees)	تابش دهی
1.17	2.34	1
2.34	2.34	2
3.51	2.34	3
4.68	2.34	3

مشخص می گردد. سپس با استفاده از تعداد خطوط تابش دهی محاسبه شده و همچنین با در نظر گرفتن پارامترهای دستگاه لیزر، ورق اولیه تابشدهی شده و سپس توسط یک ماشین اندازه گیری مختصاتی شعاع انحنای قطعه تولید شده در آزمایش تجربی محاسبه می شود.

در جدول 5 عملکرد روش ارائه شده بررسی شده است. هماطور که در این جدول مشاهده می شود آزمایش های تجربی مختلفی جهت تولید سطوح استوانه ای با شعاع انحناهای به ترتیب 120، 250، 330، 400، 480 و 570 انجام می شوند. همانطور که از جدول 5 دیده می شود اختلاف شعاع انحنای سطح استوانهای تولید شده در آزمایش تجربی با شعاع انحنای مطلوب، در آزمایشهای مختلف کمتر از 10 درصد می باشد که نتیجه بسیار خوبی است. البته خطای موجود نیز به دلایل مختلفی ایجاد شده است. یکی از این دلایل اختلاف بین تعداد خطوط تابشدهی محاسبه شده در روش تحلیلی و تعداد خطوط استفاده شده در آزمایشهای تجربی می باشد. البته دلیل دیگر برای این خطاها می تواند مربوط به ساده سازیهای انجام شده در استخراج روابط تحلیلی می باشد. به هر حال با وجود این خطاها، نتایج حاصل از آزمایشهای تجربی بسیار رضایت بخش می باشند.

در شکل 9 نمونه ای از سطوح استوانهای تولید شده در جدول 5 نشان اده شدهاند.

5- نتيجه گيري

در این مقاله، یک روش تحلیلی برای شکل دهی به کمک لیزر سطوح استوانهای با هر شعاع انحنای دلخواه ارائه شد. در این روش، پارامترهای دستگاه لیزر شامل توان، قطر پرتو و سرعت اسکن لیزر با توجه به محدودیتهای دستگاه لیزر و همچنین محدودیتهای موجود در فرآیند در نظر گرفته شدند. با توجه به اینکه در روش ارائه شده به منظور تولید سطوح استوانهای از خطوط تابش دهی و وازی استفاده شد تعداد خطوط تابش دهی و

تجربی مورد بررسی قرار گرفتند. نتایج تجربی نشان دادند که روش ارائه شده قادر به تولید سطوح استوانه ای با شعاع انحنای دلخواه و با دقت بسیار خوبی میباشد. خطای موجود بین شعاع انحنای سطوح استوانه ای تولید شده در آزمایش های تجربی و شعاع انحنای مطلوب بسیار اند \mathcal{L} و ناچیز بود.

6- مراجع

- [1] Y. Namba, Laser forming in space, in *The International Conference of Laser and Electro Optics (ICALEO'85)*, Boston, America, 1985.
- [2] M. Geiger, F. Vollertsen, The mechanisms of laser forming, *CIRP Annals*, Vol. 42, No. 1, pp. 301-304, 1993.
- [3] J. Cheng, Y. L. Yao, Cooling effects in multiscan laser forming, *Journal of Manufacturing Processes*, Vol. 3, No. 1, pp. 60-72, 2001.
- [4] H. Shen, Y. J. Shi, Z. Q. Yao, Numerical simulation of the laser forming of plates using two simultaneous scans, *Computational Materials Science*, Vol. 37, No. 3, pp. 239-245, 2006.
- [5] H. Shen, Y. J. Shi, Z. Q. Yao, Laser forming of plates using two sequent scans of different intervals, *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, Vol. 220, No. 4, pp. 507–511, 2006.
- [6] H. Shen, J. Zhou, Z. Q. Yao, Study on overlapping of two sequential scans in laser forming, *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, Vol. 221, No. 9, pp. 993–997, 2007.
- [7] M. Hoseinpour Gollo, S. M. Mahdavian, H. Moslemi Naeini, G.H. Liaghat, S. Jelvani, Theoretical and experimental study of the effects of process parameters on bending angle in laser bending process, *Modares Mechanical Engineering*, Vol. 10, No. 3, pp. 67-86, 2010. (in Persian
- [8] M. Hoseinpour Gollo, H. Moslemi Naeini, Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd:YAG laser, *Optics and Laser Technology*, Vol. 43, No. 3, pp. 475-482, 2011.
- [9] G. Chandra Jha, A.K. Nath, S.K. Roy, Study of edge effect and multicurvature in laser bending of AISI 304 stainless steel, *Journal od Materials Processing Technology*, Vol. 197, No. 1-3, pp. 434-438, 2008.
- [10] E. Gh. Zahrani, A. Marasi, Experimental investigation of edge effect and longitudinal distortion in laser bending process, *Optics and Laser Technology*, Vol. 45, pp. 301-307, 2013.

جدول 5 بررسی و مقایسه نتایج حاصل از روش ارائه شده با نتایج تجربی

Table 5 Investigation and comparison of the results of proposed method and experimental work

	شعاع انحناي			
خطای بین	قطعه توليد	تعداد خطوط	تعداد خطوط	شامانينا
نتايج تحليلي	شده در	تابش دھی	تابش دھی	شعاع انحنای
و تجربي (%)	آزمایش	مورد استفاده	مورد نیاز	مطلوب (mm)
	تجربی (mm)			
9.78	133	20	20.42	120
3.73	241	10	9.80	250
5.44	349	7	7.43	330
3.61	415	6	6.13	400
2.24	491	5	5.11	480
3.22	589	4	4.30	570

همچنین فاصله بین آنها به عنوان پارامتر تأثیرگذار در تولید سطح استوانه ای با هر شعاع انحنای دلخواه مطرح گردید. بدین منظور یک فرض اساسی مطرح گردید و در این فرض، حداقل فاصله مجاز بین خطوط تابش دهی مجاور به اندازه ای در نظر گرفته شد که تحت تأثیر حرارت ناشی از یکدیگر قرار نگیرند. به منظور تعیین حداقل فاصله مجاز بین خطوط تابش دهی مجاور، با استفاده از آزمایشهای تجربی این فاصله بررسی گردید. نتایج نشان دادند که حداقل فاصله مجاز بین خطوط تابش دهی مجاور به اندازه دو برابر قطر پرتوی لیزر تعیین میباشد. همچنین با استفاده از روش ارائه شده تعداد خطوط تابش دهی مورد نیاز و فاصله بین آنها به منظور تولید سطوح استوانه خطوط تابش دهی مورد نیاز و فاصله بین آنها به منظور تولید سطوح استوانه ای با شعاع های انحنای مختلف پیشنهاد گردیدند و توسط آزمایشهای