

ماهنامه علمى پژوهشى

مهندسی مکانیک مدرس

mme.modares.ac.ir

اندازه گیری، تعیین پروفیل سطح مقطع و مدلسازی هندسی لوله به کمک رابط برنامهنویسی کاربردی

$^{^{2}}$ محمدرضیا حسینزاده تلوکی $^{^{1}}$ ، محسن شیاکری

- 1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل
 - 2- استاد، مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل
 - * بابل، صندوق پستى shakeri@nit.ac.ir ، 16471-47148

اطلاعات مقاله

مقاله يژوهشي كامل دريافت: 16 شهريور 1394 پذيرش: 08 آذر 1394 ارائه در سایت: 29 آذر 1394

كليد واژگان: اندازهگیری سطح مقطع لوله پروفیل *گیری* مادون قرمز ساليدوركز API

ب ... منابع اصلی جمعآوری اطلاعات از وضعیت لولههای فاضلاب در کشورهای توسعه یافته و در حال توسعه، استفاده از دوربینهای CCTV است که اطلاعاتی قطعی ارائه نمی کنند. مدیریت بر تاسیسات فاضلاب نیازمند داشتن اطلاعات مطمئن از وضعیت تجهیزات است. لذا ضروری است تا اطلاعات مطمئن بهصورت کمی و هندسی از وضعیت لولهها پس از نصب و حین خدمترسانی، وجود داشته باشد. اندازهگیری میزان گرفتگی خطوط لولههای فاضلاب همواره کار مشکلی بوده است. تاکنون اقدامات مختلفی برای بهبود و کاربرد تکنیکهای مختلف اندازه گیری گرفتگی لوله صورت گرفته است ولی بیشتر آنها به مرحله کاربردی، واقعی و فراگیر نرسیدند. تعیین پروفیل یک روش جدید در این ارتباط است. تکنیک جدیدی که در این مقاله ارائه شده است با هدف اندازهگیری سطح مقطع و بهدست آوردن پروفیل مقطع لولهها است. این روش شامل دو حسگر مادون قرمز و یک سرووموتور است که بر یک مکانیزم ابزار اندازه گیری متصل میباشد. مجموعه در داخل یک لوله فاضلاب قرار می گیرد و مختصات نقاط مقطع لوله را اندازه گیری می کند. اطلاعات خام اندازه گیری شده بهوسیله سرووموتور و حسگرها، به خارج لوله انتقال یافته و پس از پردازش، در قالب فایلی متنی ذخیره میشود. با استفاده از بسته نرمافزاری توسعه یافته و پیشنهادی در محیط نرمافزار سالیدورکز، اطلاعات ذخیرهشده، به صورت پروفیل دوبعدی سطح مقطع لوله، رسم و در ادامه آن مدل سهبعدی لوله تحت بازرسی در دسترس خواهد بود و پارامترهای مختلف لوله در هر مقطع دلخواه قابل اندازه گیری است.

Measuring, cross-sectional profiling and geometrical modeling of the pipe by an application programming interface

Mohammadreza Hassanzadehtalouki, Mohsen Shakeri^{*}

Department of Mechanical Engineering, Babol University of Technology, Babol, Iran. * P.O.B. 47148-16471 Babol, Iran, shakeri@nit.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 07 September 2015 Accepted 29 November 2015 Available Online 20 December 2015

Keywords: Measurement Pipe Cross-section Profiling Infrared Solidworks API

ABSTRACT

CCTV cameras are the main sources of inspecting sewer pipeline conditions, although they do not provide decisive information in both developing and developed countries. Managing sewage installations requires reliable quantitative and geometrical data on the conditions of pipes both inservice and after installation. Measuring the rate of sewage blockage has always been challenging. Various attempts have been made to develop and apply different techniques for the determination of pipe blockage, but most of them were not practical or comprehensive. Pipe profiling could be a novel method in this regard. The method proposed in this paper would be able to measure both the crosssection and profile of sewer pipes. This includes two infrared sensors and a servomotor attached to a measurement device mechanism. The set enters a sewer pipe and measures the coordinates of pipe cross-section points. Then, the collected raw data are transferred outside in order to be processed and later saved in a text file format. The saved data will be depicted as pipe cross-section 2D profile using the suggested and developed API package at SOLIDWORKS environment, which in turn will result in the availability of a 3D model of under-inspection pipes. It should be mentioned that different parameters of every desired pipe cross-section will be measurable as well.

شبکه و ایجاد خسارت میشوند. از این رو لازم است برای نگهداری از این تجهیزات و اطمینان از صحت عملکرد، به طور منظم مورد بازرسی قرار گیرند. بازرسی وضعیت و اندازه گیری میزان گرفتگی و انسداد خطوط لولههای فاضلاب همواره کار مشکلی بوده است. در سطح بینالمللی، بازرسیهای

1- مقدمه

امروزه در کشورهای در حال توسعه و یا توسعهیافته، شبکههای فاضلاب، در حال نصب بوده و یا نصب شدهاند. این شبکهها در حین خدمت سانی و یا یس از نصب و راهاندازی، دچار عیوبی میشوند که موجب بروز نارسایی در

بصری 1 با استفاده از ارابههای 2 مجهز به دوربین یا با استفاده از روشهای سنتی و دستی صورت می گیرد. طی انجام عملیات بازرسی بصری اپراتور با هدایت ارابه حامل دوربین به داخل شبکه به بازرسی شبکه می پردازد. اپراتور می تواند وجود ترک اتصالات معیوب و مصالح به جامانده را از طریق مشاهده فیلم ارسالی از دوربین ارابه تشخیص دهد. هرچند انجام عملیات بازرسی بصری از شبکههای در حال بهرهبرداری با هر سنی مورد نیاز است، امکان وجود تمامی این عیوب در شبکههای فاضلاب تازه نصب شده نیز وجود داشته و انجام عملیات بازرسی بصری قبل از تحویل گرفتن شبکه از پیمانکار بسیار حیاتی است.

طبق بررسی عیوب محتمل از دیدگاه اهمیت و درصد وقوع در شبکههای تازه نصب شده و با توجه به هزینهها و عواقب تحمیلی ناشی از هر عیب، انجام عملیات بازرسی بصری قبل از تحویل موقت، در صرفهجویی منابع کشور بسیار حائز اهمیت است. با توجه به نتایج تحقیقات صورت گرفته به وسیله ارباب تفتی و همکاران، بیان شد که با صرف هزینه کمتر از 0.4 درصد هزینه اجرا، جهت انجام عملیات بازرسی بصری، میتوان از ضررهای احتمالی شرکت فاضلاب، که بین 15 تا 20 درصد هزینه اولیه است، جلوگیری کرد. همچنین بیان شد که در مجموع با توجه به اینکه درصد وقوع عیوب در شبکههای تازه نصب شده بالاست و از آنجایی که هزینه انجام بازرسی بصری نسبت به هزینه اجرا بسیار ناچیز است، لزوم انجام این بازرسی برای 100 درصد شبکه تازه احرا بسیار ناچیز است، لزوم انجام این بازرسی برای 100 درصد شبکه تازه نصب شده کاملا مشهود و منطقی است [1].

اطلاعات به دست آمده به وسیله اپراتور، به صورت کمی نبوده و قابلیت اطمینان و استفاده به نحو مطلوب را در حوزه مدیریت، تصمیم گیری و طراحی شبکههای فاضلاب ندارند. در این مطالعه، اندازه گیری سطح مقطع و دستیابی به پروفیل مقطع لوله با استفاده از روشی جدید بررسی میشود. به به بای استفاده از نور لیزر، حسگر مادون قرمز برای اندازه گیری مستقیم فاصله و تعیین پروفیل لوله، به کار برده شد. این چنین ابزار اندازه گیری، هم برای همراستا کردن خط مرکزی و هم برای تشخیص ناهنجاریهای سطح استفاده شد.

این مقاله شناسایی ناهنجاریهای سطح داخلی لوله و دستیابی به پروفیل سطح مقطع و مدلسازی لوله با استفاده از اندازه گیری دقیق فاصله را هدف قرار داده است. در بخش دوم این مقاله پیشینه پژوهش و در بخش سوم طراحی و ساخت سامانه ارائه شدند. در بخش چهارم به توسعه نرمافزار مهندسی و الگوریتم ورودی و خروجی پرداخته شد. در بخش پنجم تست موردی و بحث روی نتایج ارائه و نتیجه گیری نیز در بخش ششم ارائه شده است.

2- ييشينه يژوهش

بازرسی غیر مخرب 6 یا تست غیر مخرب 4 نقش مهمی را برای ارزیابی عملکرد و وضعیت لوله ایفا می کند. ارزیابی وضعیت لوله معمولا نیازمند ورودیهای متعددی از بازرسی غیر مخرب است [3,2]. به این معنی که هر تکنیک بازرسی غیر مخرب محدودیت خود را دارد؛ بنابراین، در یک بازرسی، برای ارائه اطلاعات تکمیلی، تکنیکهای متعدد ترجیح داده می شوند.

یک پلتفرم رباتیک خودمختار میتواند ارابهای باشد که چندین حسگر بازرسی غیر مخرب را به همراه داشته و بازرسی لوله را انجام دهد. اندازه گیری دامنه با لیزر یکی از تکنیکهای بازرسی غیر مخرب است که در یک سیستم

یکپارچه بازرسی غیر مخرب برای لولههای آب مدفونشده در نظر گرفتهشده است. حسگر لیزر بهعنوان پروفیلگیرنده برای بازرسی و تصویربرداری در ارزیابی خط لوله، بر پیگهای هوشمند و پلتفرمهای رباتیک مختلف از جمله ساب سی، کول ویژن، کیوز، رباتهای ارائه شده توسط مرکز اندازهگیری نوری و شرکت هنکور و مدل پیشنهاد شده به وسیله دتمر و همکاران استفاده شده است [4-9]. لیزر پروفیلگیرنده می تواند در دو حالت کاری عمل کند. در حالت اول، حلقه لیزر بر سطح داخل لوله افکنده شده و دوربین بازرسی نوارهای داخل لوله را به صورت ویدئویی می گیرد. واحد پس پردازش، نوار نور لیزر را از تصویر ویدئویی استخراج و پروفیل را بازسازی و سطح لوله را مشخص می کند. این حالت به وسیله دوران و همکاران، متسوی و همکاران، متسوی و همکاران و جانسون و همکاران تحت پژوهش قرار گرفت [10-13]. حالت دوم اندازه گیری مستقیم فاصله را که قادر به تعیین ناهنجاریهای هندسی و سطح است پیادهسازی می کند، اگرچه اصول اندازه گیری فاصله ممکن است متفاوت باشد [5,14,4].

روش معمول برای ردیابی موقعیت و جهت پلتفرم، استفاده از یک دستگاه موقعیتیاب نسبی مانند ژیروسکوپ یا شیبسنج است [8]. بههرحال، این نوع از ردیابی مستعد خطاهای بسیاری است. بنابراین، حسگر لیزر برای هدف ردیابی استفاده شده است. در پژوهش اونیکریشنن و همکاران، یک نور مخروطی لیزر که بر دیوار لوله افکنده شد با دوربین تصویر برداری شد. ویژگیهای تصویر، یعنی مرکز و شکل، استخراج و با ویژگیهای موجود در پایگاه داده برای برآورد موقعیت نسبی و جهت تطابق داده شد [16]. نصیرایی و همکاران، از اسکنر لیزر چرخان بر نمونه رباتشان استفاده کردند، تا آدمروهای لوله و اتصالها را بهعنوان نشانه ناوبری شناسایی کنند [18,17]. اطلاعات اسکن لیزری از طریق اطلاعات تصویری که با استفاده از دوربین چشم ماهی 5 برای پیادهسازی تشخیص خرابی لوله گرفته می شود، به دست می آید [17]. خط پرتو لیزر که بر سطح داخلی لوله افکنده شده است با تطابق دادن الگوی خط به منظور شناسایی نشانه، مانند زانوییها و انشعابها، تطابق دادن الگوی خط به منظور شناسایی نشانه، مانند زانوییها و انشعابها، استفاده شد [20,19].

ژنگ و همکاران ظرفیت استفاده از روش برش نوری دایرهای را برای بازرسی دیوار داخلی لوله ارائه کردند [21]. سیستم پیشنهادی شامل یک منبع نوری دیود لیزر، یک مولد الگوی حلقوی نوری و یک دوربین 6 CCD بود. با این حال، بحث درباره نتایج بازرسی در انتشار آنها با جزئیات در دسترس نبود. دوران و همکاران، از یک تصویرکننده لیزر به همراه منتشرکننده 7 استفاده کردند تا پروفیل نوری را بر سطح داخلی لولههای فاضلاب بیفکنند [10]. یک دوربین CCD، حلقه افکنشها 8 را گرفته و یک شبکه عصبی 9 برای تمایز دادن شکل عیبها آموزش دادهشد. یک امتیاز این روش این است که از تغییرات شدت افکنش برای تشخیص عیبها بهره میبرد و از ناهمراستایی با خط مرکزی اثر نمیپذیرد. سینها و همکاران کاربرد الگوریتم عصبی فازی برای دستهبندی عیبهایی که از طریق مانند رویکرد کاربرد الگوریتم عصبی نیازمند اطلاعات آموزشی خوب است که ممکن است در عمل همیشه در دسترس نباشد. ونگ و همکاران، استفاده از روش توزیع در عمل همیشه در دسترس نباشد. ونگ و همکاران، استفاده از روش توزیع نقطه لیزر را پیشنهاد کردند، که در آن پرتوهای چندگانه لیزر به طور همزمان نقطه لیزر را پیشنهاد کردند، که در آن پرتوهای چندگانه لیزر به طور همزمان

⁵⁻ Fish Eye Camera

⁶⁻ Charge-Coupled Device

⁷⁻ Diffuser

⁸⁻ Projections

⁹⁻ Neural Network

¹⁰⁻ Closed-circuit television

¹⁻ Visual Inspections

²⁻ Crawlers

³⁻ NDI

⁴⁻ NDT

بر روی سطح لوله تصویر می شود [23]. مدل آنی برای محاسبه مختصات این نقطه های لیزری توسعه داده و کانتور سهبعدی ساخته شد. بااین حال، این کاربرد، بازرسی از سطح داخلی لوله را هدف قرار نداد. همچنین بهره گیری از دامنه یاب لیزری برای بازرسی تونل راه آهن گزارش شده است [24]. محدودیت های سیستم های تجاری که در حال حاضر در دسترس است ممکن است اندازه های نادقیق از لوله را تولید کنند و به دلیل خطا در نصب و قرار بین لیزر و محور مرکزی دوربین، اثر منفی بر اطلاعات دارند.

1-2 - ديناميک خرابي لوله

در پرداختن به ارزیابی وضعیت، درک دینامیک خرابی لوله شامل سطح، نوع و شدت مکانیزم خرابی نیز مهم است. حالتهای خرابی می تواند شامل فروپاشی ناگهانی و فاجعهبار بخشی از لوله یا محدود شدن ظرفیت هیدرولیکی باشد. هدف از ارزیابی وضعیت، شناسایی عیوب در لوله است که احتمال خرابی لوله را برای ارزیابی کارایی سیستم جمعآوری فاضلاب نشان می دهد. در ابتدا لازم است پیرامون مکانیزمهای خرابی و انواع عیبهای لوله توضیحاتی ارائه شود. همچنین لازم به ذکر است که خرابی لوله به جنس لوله، قطر و نوع شبکه فاضلاب (گرانشی یا تحت فشار) بسیار وابسته است. خرابیهای لوله با توجه به علت وقوع و از نظر مکانیزم خرابی می تواند به سه دسته کلی محدودیتهای هیدرولیکی و وضعیت محدودیتهای هیدرولیکی و وضعیت ساختاری تقسیم شود.

اولین وظیفه سیستم جمعآوری فاضلاب، انتقال فاضلاب است؛ بنابراین ظرفیت هیدرولیکی و فاکتورهایی که آن را محدود می کند بسیار مهماند. محدودیتهای هیدرولیکی شایعترین شرایطی است که سیستمهای جمعآوری فاضلاب با آن مواجهاند. در شبکههای فاضلاب، هنگامی که موانع و محدودیتهای سریع هیدرولیکی ایجاد می شود، چنین موقعیتهایی به وجود می آید که می تواند موجب آب گرفتگی و جاری شدن سیل در معابر شود.

استانداردهای مورد استفاده برای طراحی هیدرولیکی، کمترین شیبها را برای قطرهای مختلف لوله جهت رسیدن به سرعتهای شویندگی برای کاهش احتمال تجمع بقایا و رسوبات، ارائه میدهد. نفوذ ریشه، تجمع رسوب و چربی از انواع عیوبی هستند که در دسته محدودیتهای هیدرولیکی قرار میگیرند. لازم به یادآوری است که اتصالهای جابهجاشده و خیز لولهها به طور مستقیم میتواند با به وجود آوردن سرعت کم که موجب رسوب مواد جامد میشود، بر جریان در لوله اثر گذار باشد.

خرابی از نوع ظرفیت هیدرولیکی، به صورت بخشی از لوله که ظرفیت موجود کافی برای شرایط طراحی شده را ندارد تعریف می شود. شرایط خرابی می تواند به وسیله ورود نشتاب و آبهای نفوذی بیش از اندازه، تغییر فرم لوله و یا شیب ناکافی رخ دهد. ورود نشتاب و آبهای نفوذی، اثر مستقیم بر ظرفیت موجود برای انتقال فاضلاب دارد. آب زیرزمینی و روان آبها از طریق اتصالهای مستقیم یا به وسیله ترکها و عیوب، به طور غیرمستقیم وارد سیستم جمع آوری می شود. در طراحی هیدرولیکی شبکه های فاضلاب جدید، سطح تغییر شکل لوله و شیب ناکافی به طور مستقیم بر ظرفیت هیدرولیکی یا ظرفیت جریان لوله اثر می گذارد. ظرفیت جریان می تواند بر اساس معادله منینگ محاسبه شود:

$$Q = \frac{1}{n} \times A \times R_h^{\frac{2}{3}} \times S^{\frac{1}{2}}$$
 (1)
 n در آن Q برابر ظرفیت جریان (حجم بر زمان)، A برابر سطح مقطع،

 3 برابر شینگ 1 برابر شعاع هیدرولیک 2 (طول) و 2 برابر شیب در لوله است. کاهش متناسب در سطح مقطع یا شیب لوله منجر به کاهش متناسب در ظرفیت جریان خواهد شد.

خرابی به دلیل ظرفیت هیدرولیکی اغلب علامتی از عیوبی مانند عیوب ساختاری است. خرابی ساختاری به دلیل عیوب دیواره لوله و یا پوشش خاک که برای حمایت لوله استفاده میشود، رخ می دهد. به طور کلی نوع عیبی که مربوط به خرابی ساختاری میشود شامل ترکها، ناهمراستایی یا جابه جایی اتصالها، تغییر شکل لوله، درپوش و قاب ترک دار آدمروها و خوردگی داخلی و خارجی است. خوردگی داخلی به وسیله تشکیل سولفید هیدروژن رخ داده و خوردگی خارجی نیز مربوط به خاک است. لوله به وسیله خاک پوشش داده میشود که شامل بستر خاک و پوشش پشتیبانی است. بسترسازی با خاک همانند پی برای لوله عمل کرده و بار قائم را اطراف خارجی دیواره لوله توزیع می کند. لوله در معرض بارهای زنده و بارهای متمرکز بر خود است. از دست می کند. لوله در معرض بارهای زنده و بارهای متمرکز بر خود است. از دست انحراف لوله، تغییر شکل و ترک دار شدن در جهت طولی را در پی داشته باشد. بار ترافیکی افزایش یافته یا از دست دادن پوشش خاک، عوامل دیگر باست.

نوع و درجه خرابی با توجه به جنس لوله متفاوت است. برخی از جنسهای لوله (مانند PCCP⁴) مستعد ابتلا به خرابی ناگهانیاند؛ درحالی که جنسهای دیگر به تدریج خراب میشوند و بهراحتی با بازرسی بصری قابل شناساییاند. حالتهای متداول خرابی برای انواع مختلف جنس لوله که در سیستمهای جمعآوری فاضلاب استفاده میشود در زیر آورده شده است.

لوله آهنی (آهن داکتیل، چدن و فولاد) - حالت خرابی اول برای لولههای فلزی، خوردگی داخلی و خارجی است که منجر به شکستگی و سوراخ شدن دیواره لوله میشود. لولههای چدنی، به دلیل ترد بودن مستعد ابتلا به ترکخوردگی است و لولههای فولادی با قطر بزرگ نیز نسبت به فروپاشی با خوردگی حساساند.

لولههای بتنی (RCP- PCCP) - اغلب عامل مهم در خرابی ساختاری لولههای بتنی، خوردگی است. به طورمعمول در نوع PCCP پس از آن که سطح دیواره داخلی لوله به درجه در معرض خوردگی قرار گرفتن مسلح کنندههای فولادی برسد، خراب میشود. با خورده شدن، مسلح کنندههای فولادی، شروع به متورم شدن و شکسته شدن در اطراف بتن می کنند و منجر به فروپاشی میشود. PCCP مکانیزم خرابی متمایزی دارد. خرابی زمانی اتفاق می افتد که سیمهای پیش تنش داده شده، در نتیجه خوردگی یا آسیب مستقیم فیزیکی به لوله بشکنند.

لولههای پلاستیکی (پلی ونیل کلراید (PVC⁶)، پلیاتیلن چگالی بالا (HDPE⁷) حالت خرابی اولیه لوله پلاستیکی ترکدارشدن تحت تنش محیطی است، طوری که به دلیل توسعه و گسترش تنش در لوله تغییرشکل داده شده یا به وسیله رشد آرام ترک رخ می دهد؛ این پدیده زمانی به وقوع می پیوندد که لوله در معرض تنش کششی برای مدت طولانی به کار گرفته شده باشد. همچنین اتصالهای نشت دار نیز می تواند در خرابی های لولههای پلاستیکی نقش داشته باشند.

¹⁻ Manning's Roughness Coefficient

²⁻ Hydraulic Radius

³⁻ Slope

⁴⁻ Pre-stressed Concrete Cylinder Pipe

⁵⁻ Reinforced Concrete Pipe

⁶⁻ Polyvinyl Chloride

⁷⁻ High-density polyethylene

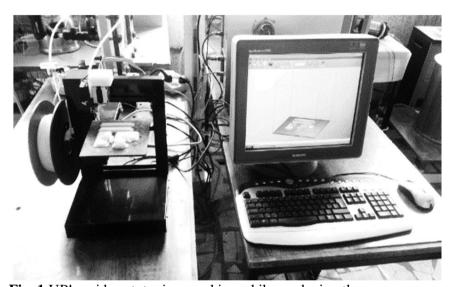
عیوب شبکههای فاضلاب بهصورت سازهای یا خدماتی دستهبندی میشوند. عیوب سازهای شامل ترکها، شکستگیها، فروپاشیها، تغییر شکلها، جابهجایی اتصالها و اتصالهای باز میشود. عیوب خدماتی نیز شامل ریشههای درخت، تجمع رسوبات و انسداد میشود.

شایعترین عیوب در سیستمهای جمعآوری فاضلاب، لوله شکسته یا ترکدار، نفوذ ریشه، رسوب، تجمع چربی، اتصال جابهجا، خوردگی، نشتی درپوش و قاب و خیز لوله هستند. بههررو، عیوب لولهها متناسب با جنس لوله و قطر لوله متفاوت است. به دلیل این که خطوط گرانشی یا تحتفشار، بهطور کلی از جنسهای مختلفی ساخته شدند، مستعد ابتلا به انواع مختلف عیوب می باشند.

لولههای نوع گرانشی به طور معمول از PVC یا VCP¹ ساخته شدند که مستعد تجمع چربی و نا همراستایی اتصالها و نشتی هستند. بااین حال، VCP، بیشتر عیبهای ترک، شکستگی و نفوذ ریشه را تجربه می کند در حالی که PVC بیشتر درجه انحراف شدید یا مسائل ناهمراستایی و عیبهای اتصال انشعاب را تجربه می کند.

برخلاف لولههای گرانشی، بیشتر شبکههای تحتفشار از مواد آهنی (PVC و مانند فولادهای جوش دادهشده، آهن داکتیل و چدن) یا پلاستیکی (HDPE) ساخته شدند.

3- طراحي و ساخت سامانه


اولین گام برای رسیدن به هدف این پژوهش، دستیابی به اطلاعات ورودی است. در این پژوهش برای اندازه گیری سطح مقطع لولهها به عنوان اطلاعات ورودی، مکانیزم ابزار اندازه گیری، طراحی و با روش نمونهسازی سریع ساخته شد (شکل 1). این مکانیزم باید ابزار اندازه گیری را تا حد ممکن در محور مرکزی لوله نگه داشته و قابلیت انتقال مجموعه را در راستای طولی لوله داشته باشد. طراحی این مکانیزم در نرمافزار سالیدورکز نسخه 2015 انجام شد. قطعات مربوط به مکانیزم ابزار اندازه گیری از جنس ABS و به کمک دستگاه نمونهسازی سریع مدل !UP موجود در آزمایشگاه پیل سوختی دانشگاه صنعتی نوشیروانی بابل ساخته شد (شکل 1).

همان طور که در شکل 2 قابل مشاهده است این مکانیزم شامل یک سرووموتور، دو حسگر مادون قرمز، ریلهای راهنمای قابل تنظیم و ثابت، مفصلها، رابطها، تعدادی پیچ و مهره جهت مونتاژ قطعات به یکدیگر، یک پایه نگهدارنده و چهار چرخ چندجهته است. دو حسگر مادون قرمز پشت به یکدیگر و روبه دیواره داخلی لوله بر ابزار اندازه گیری جای گرفتهاند. با حرکت پیچ تنظیم، دو بازوی تنظیم کننده به محل جایگیری حسگرها نیرو وارد کرده و حسگرها با جابه جایی برابر، روی راهنما حرکت کرده و به سطح دیواره داخلی لوله نزدیک یا از آن دور می شوند. محور مرکزی ابزار اندازه گیری بر محور خروجی یک سرووموتور منطبق شده است. مجموعه مکانیزم ابزار اندازه گیری بر یک پایه نگهدارنده که دارای چهار چرخ چندجهته است قرار گرفته است. از چرخهای چندجهته به منظور قرارگیری آسان تر و قابل اطمینان تر محور ابزار اندازه گیری بر محور مرکزی لوله همراه با قابلیت حرکت دادن مجموعه در راستای طولی لوله بهره گرفته شده است.

برای تامین انرژی، کنترل سرووموتور و خواندن اطلاعات خروجی حسگرها و ذخیره اطلاعات در حافظه لپتاپ، یک مدار کنترل طراحی و ساخته شده است (شکل 3). در ابتدا با استفاده از پیچ تعبیه شده بر روی

محور سرووموتور، با استفاده از اهرمبندی طراحیشده، موقعیت قرارگیری حسگرها نسبت به سطح داخلی لوله کالیبر و تنظیم میشود. با کالیبر کردن مکانیزم ابزار اندازه گیری، خروجی حسگرها در محدوده قابل قبول قرار گرفته و اطلاعات اندازه گیری شده توسط حسگرهای مادون قرمز قابل اطمینان تر میشوند. با چرخش سرووموتور، بازوهای مکانیزم، حول محور سرووموتور چرخیده و حسگرهای انتهای بازوها موقعیت قرارگیری سطح روبهروی خود از لوله را می سنجد و اطلاعات به دست آورده را از طریق کابل USB به بیرون لوله انتقال می دهند. این اطلاعات در قالب فایل متنی در پوشهای از پیش تعریف شده در حافظه لپتاپ ذخیره می شود.

طبق دستورالعمل ارائه شده توسط سازمان مدیریت و برنامهریزی کشور در خصوص عملیات بازرسی از لولههای فاضلاب [25]، میزان انحراف تا ده درصد بزرگترین قطر مقطع فاضلابرو قابل قبول است و تغییر شکل لوله با خطای زیادی همراه نیست، به همین خاطر در عین کم بودن میزان انحراف محور مرکزی ابزار اندازه گیری از محور مرکزی لوله تحت بازرسی، در این پژوهش فرض می شود محور مرکزی ابزار اندازه گیری در حین اندازه گیری بر محور مرکزی لوله منطبق است.

Fig. 1 UP! rapid prototyping machine while producing the measurement device mechanism parts

شکل 1 دستگاه نمونه سازی سریع مدل !UP در حال ساخت قطعات مکانیزم ابزار اندازه گیری

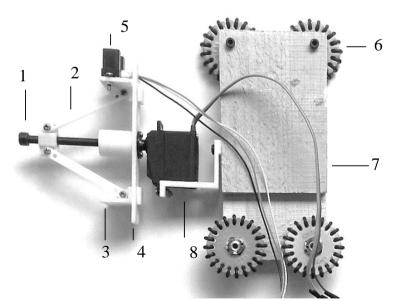


Fig. 2 The measurement device mechanism 1- adjustment screw 2- adjustment arm 3- sensor locating place 4- guide 5- infrared sensor 6- multidirectional wheels 7- holding support 8- servomotor شکل 2 مکانیزم ابزار اندازه گیری 1- پیچ تنظیم کننده 2- بازوی تنظیم کننده

3- محل جایگیری حسگر 4- راهنما 5- حسگر مادون قرمز 6- چرخهای چندجهته 7- یایه نگهدارنده 8- سرووموتور

¹⁻ Vitrified Clay Pipe

²⁻ Omni-directional

Fig. 3 The measurement device control board 1- start key 2- outlet circuit 3- servomotor connector 4- power supply 5- sensor connector شكل 3 مدار كنترل ابزار اندازه گيري 1- كليد شروع 2- خروجي مدار 3- ارتباط با سرووموتور 4- منبع تغذیه 5- ارتباط با حسگر

4- توسعه بسته نرمافزاری به کمک API¹

در این پژوهش برای ارزیابی کمی فضای داخلی و مدلسازی لوله مورد بازرسی، یک بسته نرمافزاری در محیط نرمافزار سالیدور کز توسعه داده شده است. به دلیل اینکه نرمافزار طراحی مهندسی مکانیک دارای بستری آماده برای کار با محیط طراحی است بهترین بهره را میتوان با مدلسازی لوله در آن به دست آورد. برای این کار لازم بود تا APIهایی به صورت مستقل یا درون برنامهای در نرمافزار مورد نظر نوشته شود تا اطلاعات را گردآوری و پس از پردازش آنها، خروجی مورد نظر را ارائه دهد.

API، رابط بین کتابخانه یا سیستم عامل و برنامههایی است که از آن تقاضای سرویس میکنند. رابط کارکردهایی را تعریف میکند که کتابخانه یا سیستمعامل می تواند ارائه دهد. این کارکردها در قالب یک نرمافزار یا کتابخانه پیادهسازی میشوند. به عبارت سادهتر، یک API، کدی است که به دو برنامه نرمافزاری اجازه ارتباط با یکدیگر را میدهد و مجموعه توابعی بوده که یک برنامه می تواند از برنامهای دیگر فرا بخواند. از مهم ترین فواید استفاده از API در نرمفزارها می توان صرفهجویی قابل توجه در وقت، افزایش دقت در عملیات و کاهش هزینه را نام برد.

بسته نرمافزاری که برای این پژوهش توسعه داده شد در محیط نرمافزار سالیدورکز نسخه 2015 بوده است. بسته نرمافزاری API در نرمافزار سالیدور کز به چند صورت امکان پذیر است. در این نرمافزار می توان از طریق ماکروها، زبانهای برنامهنویسی برای توسعه مستقل 2 یا برنامههای افزونه 8 و یا از طریق برنامههای سازگار با ویژوال بیسیک برای کاربردها یا VBA^4 دیگر مایکروسافت، بسته نرمافزاری API را توسعه داد. برای استفاده موفقیتآمیز از بسته نرمافزاری API در سالیدورکز، نیاز به دانشی پیرامون زبانهای برنامهنویسی است. برای بسته نرمافزاری API در سالیدورکز، زبانهای برنامهنویسی مختلفی⁵ وجود دارند. برای برنامهنویسی به صورت مستقل، نیاز است برنامه در محیطی خارج از سالیدورکز نوشته شده و سپس تفسیر شود. این برنامه قادر است نرمافزار سالیدور کز را نیز اجرا کند. برخلاف برنامهنویسی مستقل، ماکرونویسی نیازی به تفسیر نداشته و به همراه سالیدور کز قابل نصب و اجرا است. در این پژوهش از روش ماکرونویسی استفاده شده است.

5- Visual C++ /Visual C# /VB.Net /VBA

یکی از روشهای نوشتن ماکرو، استفاده از مجموعه ابزار مبتنی بر VBA است. VBA اجازه نوشتن و ویرایش برنامه را در نرمافزار سالیدورکز می دهد و بر پایه ویژوال بیسیک شش می باشد که از محبوب ترین برنامههای توسعه داده شده توسط مایکروسافت است. همچنین VBA برای ماکروهای تجاری و برنامههایی مانند اکسل یا ورد نیز استفاده میشود.

برای مدلسازی لوله با استفاده از اطلاعات به دست آمده، الگوریتمی طراحی شد. این الگوریتم در شکل 4 ارایه شده است. همان طور که مشاهده می شود در ابتدا لازم است یکی از صفحات اصلی روبهرو، پهلو و یا بالا برای شروع فرایند، انتخاب شده و یک صفحه به عنوان مرجع در آن ایجاد شود. از آنجاکه برای مدلسازی لوله در نرمفزار، نیاز به تعیین موقعیت مقطعهای اندازه گیری شده نسبت به صفحه مرجع است، در گام بعدی صفحههای مرجع بعدی با فاصلههای تعیین شده ایجاد میشود. در مرحله بعد طبق الگوریتمی که در شکل 5 بیان شده است، بسته نرمافزاری، هر بار به محیط ترسیم وارد می شود و پس از نام گذاری جدید بر محیط ترسیم، فایل متنی حاوی اطلاعات مختصات مقطع را فراخوانی کرده و خط به خط اطلاعات را از آن استخراج مي کند.

اطلاعات استخراج شده توسط این زیربرنامه در محیط ترسیم به صورت نقطههای کنترلی رسم میشود. API پس از عبور یک منحنی اسپیلاین از این نقاط از محیط ترسیم خارج میشود. تا این مرحله پروفیل یک مقطع از لوله ترسیم شده است. برای رسم پروفیلهای بعدی این مراحل تکرار میشود. پروفیلهای رسم شده همه در نخستین صفحه مرجع و روی هم قرار گرفتهاند. در گام بعد، زیربرنامه بعدی، هر ترسیم را به صفحه مرجع متناظر باخود انتقال میدهد و در آخرین مرحله یک رویه از کلیه پروفیلهای ترسیم شده عبور داده شده و لوله در نرمافزار مدلسازی میشود.

برای ارزیابی لوله برنامهای نوشته شده است که دستورالعمل تعیین شده از سوی سازمان مدیریت و برنامهریزی ایران در خصوص عملیات ویدئومتری، در آن لحاظ شده است. برای این برنامه همانطور که در شکل 6 قابل مشاهده است یک پنجره محاورهای دارای ورودیهای متعدد طراحی شده است.

کاربر می تواند مساحت مقاطع رسم شده (به میلی متر مربع)، میزان شیب لوله، مقدار شعاع هیدرولیکی و ضریب منینگ را در مکانهای مربوطه وارد

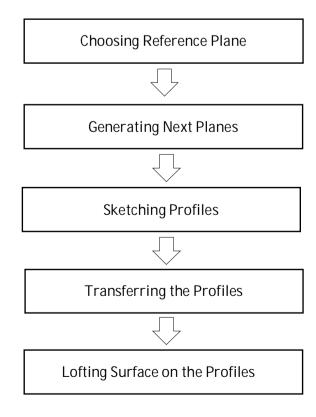


Fig. 4 Written API algorithm for Pipe reconstruction شكل 4 الگوريتم برنامه نوشته شده در اين پژوهش براي بازسازي لوله

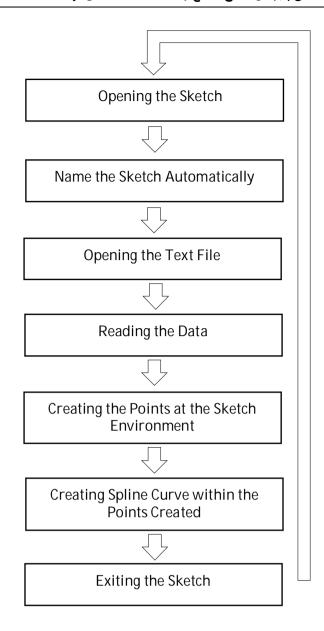
¹⁻ Application Programming Interface

²⁻ Standalone

³⁻ Add-in Applications

⁴⁻ Visual Basic for Applications

می شود. همچنین کاربر می تواند اطلاعات خروجی را به صورت گزارش چاپ و ذخیره نماید.


5- تست موردي و بحث روي نتايج

برای آزمون مورد مکانیزم ابزار اندازهگیری و بسته نرمافزاری، یک مجموعه آزمایشگاهی طراحی شد. مجموعه آزمایشگاهی شامل و یک لوله فاضلاب استاندارد، یک نگهدارنده V شکل برای نگهداری لوله و تعدادی بلاک به عنوان مانعهای از پیش طراحی شده است. موقعیت قرار گیری و نصب چرخها و مکانیزم ابزار اندازه گیری بر پایه نگهدارنده به گونهای است که در زمان قرارگیری مکانیزم در داخل لوله، محور خروجی سرووموتور با دقت خوبی بر محور مرکزی لوله منطبق میشود. مرکز ریل راهنما بر محور خروجی سرووموتور متصل مىباشد. سرووموتور مدل SG5010 بوده و قابليت چرخش از زاویه صفر تا 180 درجه را به همراه کنترل زاویه در هر گام چرخش دارد. حسگرهای مورد استفاده در این پژوهش، دو حسگر فاصلهسنج دارای فرستنده - گیرنده امواج مادون قرمز مدل GP2Y0A41SK0F است. این حسگرها بر جایگاه طراحی شده در مکانیزم تنظیم کننده قرار می گیرند. وجود این مکانیزم برای رعایت فاصله میان حسگرها نسبت به مرکز ریل راهنما بوده و با تنظیم آن، فاصله بین حسگرها و سطح داخلی لوله، جهت اندازهگیری بهینه میشود. با قرارگیری حسگرهای فاصلهسنج مادون قرمز در انتهای بازوها، می توان در یک بار چرخش 180 درجهای سرووموتور، فاصله نقاط روی محیط مقطع تحت بازرسی تا گیرنده حسگرها را اندازه گرفت.

اساس کار حسگر فاصلهسنج مادون قرمز استفاده شده در این است که یک پالس موج مادون قرمز توسط فرستنده ارسال میشود. نور مادون قرمز گسیل شده، در میدان دید حسگر حرکت کرده تا به یک مانع برخورد کند یا به مسیر خود ادامه دهد. اگر در مسیر نور ارسالی شیئی وجود نداشته باشد، نور به مسیر خود ادامه داده و در نتیجه هیچ بازتابی نخواهد داشت و خروجی به معنی عدم وجود مانع است. اگر نور از یک مانع بازتابش کند، آشکارساز حسگر، آن را دریافت می کند. بین نقطه ارسالی، نقطه بازتاب و آشکارساز حسگر، یک مثلث تشکیل میشود. زاویه این مثلث بسته به فاصله مانع تا حسگر متفاوت است. لازم به ذکر است که مخروط مادون قرمز گسیل شده از فرستنده همواره ثابت بوده و نور با یک زاویه ارسال میشود. این زاویه بازتاب است که با توجه به تغییر فاصله مانع نسبت به فرستنده و گیرنده حسگر متفاوت است. این حسگرهای فاصلهسنج در محدودهای خاص فاصله را به درستی اندازه می گیرند، لذا کالیبر کردن مکانیزم ابزار اندازه گیری به منظور قرار گرفتن حسگرها در محدوده مورد اطمینان است تا اطلاعات خروجی آنها قابل اعتماد باشد. محدوده اندازهگیری فاصله برای حسگر مورد استفاده در این پژوهش بین 40 تا 30 سانتیمتر میباشد.

برای انجام آزمایش، مجموعه اندازه گیری از یک انتها وارد لوله می شود و در موقعیت اولیهای برابر لبه لوله قرار می گیرد. سرووموتور در حالت پیش فرض در زاویه صفر درجه (نسبت به افق) قرار دارد. تنظیمهای اولیه برای کالیبرکردن فاصله حسگرها تا دیواره لوله جهت بهینه سازی انجام می گیرد. سپس با انتخاب کلید شروع 2 فرایند اندازه گیری اطلاعات لازم برای پروفیل گیری مقطع لوله در آن موقعیت شروع می شود (شکل 3). در شکل 6 نجوه قرار گیری ابزار اندازه گیری در حال کار داخل لوله قابل مشاهده است.

فرایند اندازه گیری مختصات نقاط روی محیط مقطع مورد بازرسی به این

Fig. 5 API algorithm for Cross-section profiling at the sketch environment

شكل 5 الگوريتم برنامه رسم سطح مقطع در محيط ترسيم

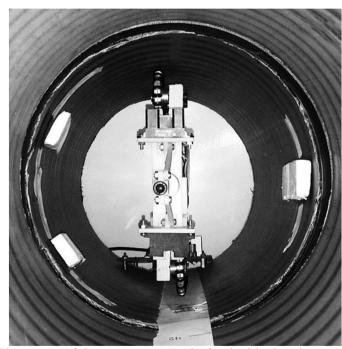


Fig. 6 Placement of the measurement device inside the pipe شکل 6 نحوه قرارگیری ابزار اندازه گیری در حال کار داخل لوله

نماید. پس از تایید کلید محاسبه و ارزیابی اتوسط کاربر، برنامه اطلاعات را به عنوان ورودی پذیرفته و خروجی مطلوب را نمایش می دهد. خروجی های قابل مشاهده شامل میزان سلامت در عین تغییر شکل سطح مقطع لوله و میزان دبی خروجی طبق سطح مقطع وارد شده است. عدم تغییر شکل سطح مقطع هم به صورت کمی از نوع درصد و هم به صورت کیفی از نوع بیان شرایط کنونی مقطع لوله است. دبی خروجی سطح مقطع به مترمکعب بر ثانیه بیان

77

گونه است که با شروع فرایند، سرووموتور در زاویه صفر درجه حسگرها را موقعیتدهی کرده و حسگرها فاصله نقطه مقابل خود را تا گیرنده در زاویههای صفر و 180 درجه اندازه می گیرند. سپس سروموتور مکانیزم ابزار اندازه گیری را به اندازه پنج درجه دوران میدهد. این بار حسگرها فاصله نقاط را در زاویههای پنج و 185 درجه اندازه می گیرد. از آنجا که گام دوران برای سرووموتور پنج درجه تعیین شده، برای جاروب کردن فضای 360 درجه کافی است تا سرووموتور در 36 موقعیت دورانی با همین گام برای اندازه گیری توقف کند. با این شرایط، برای هر مقطع، مختصات 27 نقطه از محیط مقطع به دست می آید. بنابراین به همین ترتیب مختصات نقاط محیط مقطع، یک به یک اندازه گیری می شود.

مکانیزم ابزار اندازه گیری با مختصات قطبی کار می کند. به این صورت که زاویه چرخش سرووموتور از پیش قابل تعریف و مشخص بوده و فاصله بین نقطه روی محیط مقطع تحت بازرسی، نسبت به محور مرکزی مکانیزم ابزار اندازه گیری، سنجیده می شود. مقدار اندازه گیری شده بیان گر فاصله بین سطح روبه روی حسگر تا گیرنده موج است. حال آنکه حسگرها با فاصله ای نسبت به محور راهنما قرار دارند. از آنجاکه قبل از شروع فرایند اندازه گیری فاصله بین حسگرها تا دیواره لوله بهینه می شود، بنابراین فاصله حسگر تا محور راهنما مشخص است. این فاصله قبل از شروع راهاندازی مکانیزم، اندازه گیری شده و به واحد کنترل مکانیزم فرستاده می شود. واحد کنترل، اطلاعات اندازه گیری که شامل زوج مرتب به صورت θ و τ است را دریافت و طبق رابطههای زیر که شامل زوج مرتب به مختصات در دستگاه کار تزین تبدیل می کند:

$$x = \frac{\rho \cos \theta}{1000} \tag{2}$$

$$y = \frac{\rho \sin \theta}{1000} \tag{3}$$

که در آن θ اطلاعات زاویه مربوط به هر نقطه روی محیط مقطع تحت بازرسی، r فاصله مربوط به آن نقطه نسبت به حسگر، r فاصله حسگر تا مرکز راهنما و ρ برابر فاصله نقطه مورد نظر تا مرکز مبدأ مختصات است که از رابطه زیر به دست می آید:

$$\rho = r + R \tag{4}$$

با مشخص بودن θ و θ ، طبق روابطی که بیان شد واحد کنترل مختصات کارتزین نقاط تحت بازرسی را تعیین می کند. با هر بار شروع فرایند اندازه گیری، سرووموتور در 72 نقطه از محیط هر مقطع با گام پنج درجه، عملیات اندازه گیری را انجام می دهد. تقسیم بر هزار در معادله های 2 و 3، به این معنی است که اندازه های x و y باید در واحد متر در فایل متنی ذخیره شوند. هر فایل متنی شامل مختصات x-y-z نقاط در آن مقطع است. در این آزمایش فاصله بین هر بار اندازه گیری، هفت سانتی متر در نظر گرفته شد. در هر بخش، اندازه گیری ها توسط مکانیزم ابزار اندازه گیری انجام و اطلاعات اندازه گیری هر مقطع، همزمان به وسیله یک کابل USB به حافظه لپتاپ فرستاده و در قالب فایل متنی متناظر با هر مقطع ذخیره می شود.

در این پژوهش برای دسترسی بهتر و کارآمدتر به بستههای نرمافزاری نوشته شده، یک پنجره محاورهای طراحی شد. در بالاترین بخش این پنجره محاورهای کلید ساختن پروفیل لوله قرار دارد. با اجرای این کلید، همه بستههای نرمافزاری (APIهای) نوشته شده طبق الگوریتمی که در شکل 4 بیان شد به ترتیب و خط به خط اجرا شده و لوله تحت بازرسی به صورت کامل در محیط طراحی قطعه نرمافزار سالیدورکز، مدلسازی میشود. در بخش زیرین آن پنجرههایی برای ورود اطلاعات مربوط به شیب، شعاع هیدرولیکی و ضریب زبری منینگ طراحی شده و طبق استانداردهای رایج

برای آنها مقداری به صورت پیشفرض تعیین شده است (همچنین این امکان فراهم شده است که کاربر بتواند متناسب با شرایط، با وارد کردن اطلاعات جدید در پنجره، مقادیر پیشفرض را تغییر دهد).

حال با استفاده از سربرگ ارزیابی و قسمت مشخصات بخش در نرمافزار سالیدور کز، برای هر پروفیل، مساحت مربوط به آن قابل محاسبه می باشد و می توان مساحت مربوط به هر پروفیل را در محل متناظر در پنجره محاورهای طراحی شده وارد نمود. بسته های نرمافزاری (APIهای) نوشته شده، توانایی سنجش و شناسایی میزان آسیب دیدگی لوله را داشته و پس از پردازش، اطلاعات مورد نظر را نمایش می دهد.

در اواخر سال 1393، سازمان برنامهریزی و بودجه کشور، دستورالعمل انجام عملیات ویدئومتری شبکههای فاضلاب را تدوین کرد که دستیابی به راهی جهت بررسی کمی برخی از موارد آن در رابطه با تعیین تغییر شکل لوله، اندازه گیری سطح مقطع، مدلسازی لوله و غیره، در این پروژه محقق شد.

با اجرای کلید محاسبه و ارزیابی، بستههای نرمافزاری مربوطه اجرا میشوند و اطلاعات شیب، ضریب زبری منینگ، شعاع هیدرولیکی و مساحت مقاطع را به عنوان ورودی دریافت کرده و در سه ستون خروجیها را ارائه میدهد. ستون اول درصد سلامت در عین تغییر شکل سطح مقطع لوله را بیان می کند. ستون دوم سطح مقطع را طبق دستورالعمل ارزیابی کرده و به صورت کیفی نتایج را ارائه میدهد. ستون سوم نیز بیانگر ظرفیت هیدرولیکی برای هر سطح مقطع است. این اطلاعات خروجی به همراه اطلاعات ورودی می توانند با اجرای بسته نرمافزاری نوشته شده در ارتباط با کلید چاپ، به صورت گزارش، چاپ یا ذخیره شود. تمامی این نتایج در شکل 7 ارائه شدند. جدول 1 مساحت مقاطع واقعی و مساحت پروفیل متناظر ترسیمی طبق اطلاعات اندازه گیری شده را نشان میدهد. همان طور که مشاهده می شود بین این دو مساحت اختلاف اندکی وجود دارد. این اختلاف به طور عمده به دلیل فاصله بین زاویههای اندازهگیری از محیط مقاطع میباشد (تعیین گام 5 درجه برای دستیابی به مختصات 72 نقاط کنترلی) و با افزایش تعداد نقاط کنترلی (کاهش زاویه گام بین نقاط کنترلی)، برخلاف افزایش زمان اندازهگیری و ترسیم پروفیل، دقت در رسم پروفیل و مدلسازی لوله بیشتر شده و این اختلاف کاهش می یابد.

مقاطع واقعی تحت بازرسی و پروفیلهای رسم شده از مقاطع متناظر در نرمافزار سالیدورکز، در شکل 8 ارائه شدهاند. همانطور که مشخص است پروفیلها با دقت قابل قبولی در نرمافزار رسم شدند. در شکل 9 لوله مدلسازی شده در نرمافزار سالیدورکز نمایش داده شده است. این لوله مدلسازی شده و اطلاعات مستخرج از این فرایند می تواند به عنوان یک مرجع قابل اطمینان و کمی برای پیمان کارها و کارفرماها مورد استفاده قرار گیرد.

این اندازه گیریها بر لولههای فاضلاب پلیاتیلن با چگالی بالا که در کشور برای نصب شبکه خطوط فاضلاب متداول است انجام شد. قطر لوله مورد آزمایش برابر 200 میلیمتر انتخاب شد که برای اندازه گیری اولیه بسیار مناسب است و از نظر تجمع توده شناسایی شده است. طول لوله مورد بازرسی 70 سانتیمتر بوده و به همراه موانع از پیش تعیین شده به صورت بلاکهای مکعب مستطیلی برای اندازه گیری انتخاب شده است. ابعاد مانعهای مورد استفاده در این پژوهش و موقعیت طولی و دورانی قرار گیری آنها در لوله مورد آزمایش در جدول 2 ارائه شده است.

¹⁻ Evaluate

²⁻ Section Properties

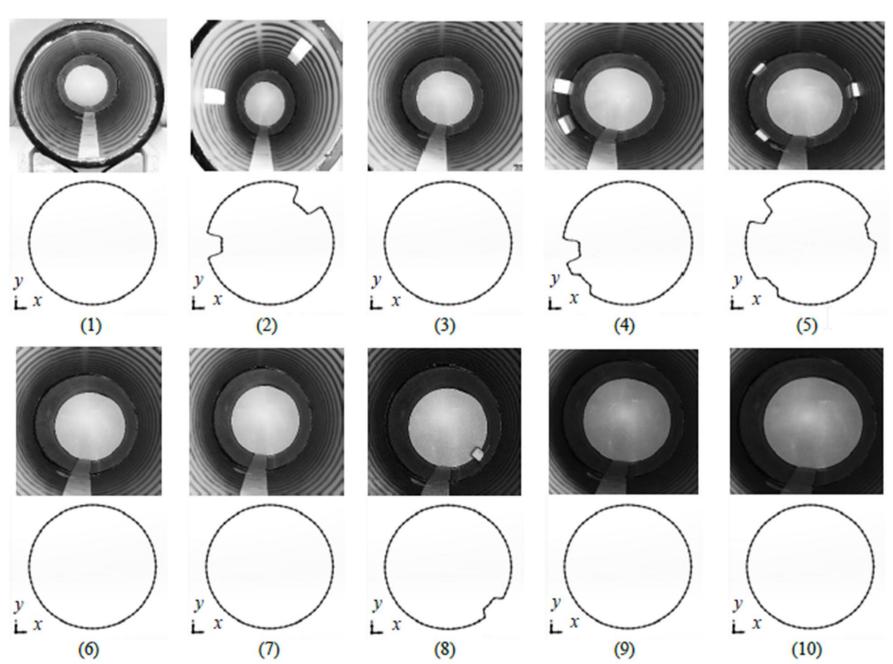



Fig. 7 The user-form containing all APIs in SOLIDWORKS

شکل 7 پنجره محاورهای در برگیرنده تمام بستههای نرمافزاری نوشته شده در نرمافزار سالیدورکز در این پژوهش

Fig. 8 Generated profiles from cross-sections by means of coded APIs in SOLIDWORKS with their real cross-sections (corresponding numbers) - Top: real cross-section, bottom: generated cross-section, for every view

شکل 8 پروفیلهای رسم شده از مقاطع توسط بستههای نرمافزاری نوشته شده در نرمافزار سالیدورکز، به همراه مقطع واقعی متناظر با آن (به ترتیب شماره)- در هر نما، تصویر بالا مقطع واقعی و تصویر پایین مقطع پروفیل رسم شده را نمایش میدهد

7- فهرست علائم

n فاصله نقطه نسبت به حسگر (mm)

فاصله حسگر تا مرکز راهنما (mm)

علائم يوناني

زاویه نقطه روی محیط مقطع تحت بازرسی نسبت به موقعیت اولیه θ شروع فرایند (درجه)

و فاصله نقطه تحت اندازه گیری تا مرکز مبدأ مختصات (mm)

8- مراجع

- [1] M. Arbabtafti, D. Ebrahimi, Study on importance of doing visual inspection before temporary delivery to save resources, *National Conference on Water and Wastewater Engineering (NCWWE)*, 2011. (in Persian فارسي)
- [2] Y. Kleiner, B. B. Rajani, Comprehensive review of structural deterioration of water mains: statistical models, *Urban Water*, Vol. 3, No. 3, pp. 131–150, 2001.
- [3] B. B. Rajani, Y. Kleiner, Comprehensive review of structural deterioration of water mains: physically based models, *Urban Water*, Vol. 3, No. 3, pp. 151– 164, 2001.
- [4] Smart Light Devices, *Innovative subsea laser and imaging technology*, Accessed on December 2011, http://www.sldltd.com.
- [5] Cool Vision 3D profiling accuracy and reliability, Accessed on December 2011, http://www.coolvision.com.
- [6] CUES laser profiler, Accessed on December 2011, http://www.cuesinc.com/Laser-Profiler.html.
- [7] OMC laser profiler, Accessed on December 2011, http://www.optical-metrology-centre.com.
- [8] Hancor, Laser profiling of flexible pipe, Technical Note, Accessed on December 2011, http://www.hancor.com.
- [9] A. Dettmer, D. Hall, H. Hegab, M. Swanbom, Refining laser profiling methods used for pipeline assessment, *North American Society for Trenchless Technology (NASTT) NO-DIG*, Orlando, FL, pp. 1–9, 2005.
- [10] O. Duran, K. Althoefer, L. D. Seneviratne, Pipe inspection using a laser-based transducer and automated analysis techniques, *IEEE Transactions Mechatronics*, Vol. 8, pp. 401–409, 2003.
- [11] K. Matsui, A. Yamashita, T. Kaneko, 3-d shape measurement of pipe by range finder constructed with omni-directional laser and omni-directional camera, *IEEE International Conference on Robotics and Automation*, pp. 2537–2542, 2010.
- [12] G. Zhang, J. He, X. Li, 3D vision inspection for internal surface based on circle structured light, *Sensors Actuators A: Physical*, Vol. 122, pp. 68–75, 2005.
- [13] M. Johnson, G. Sen Gupta, A robotic laser pipeline profiler, *IEEE Instrumentation and Measurement Technology Conference*, Vol. 2, pp. 1488–1491, 2003.
- [14] E. Wu, Y. Ke, B. Du, Noncontact laser inspection based on a PSD for the inner surface of minidiameter pipes, *IEEE Transactions on Instrumentation and Measurment*, Vol. 58, pp. 2169–2173, 2009.
- [15] Z. Liu, D. Krys, B. Rajani, H. Najjaran, Processing laser range image for the investigation on the long-term performance of ductile iron pipe, *Nondestructive Testing and Evaluatin*, Vol. 23, pp. 65–75, 2008.
- [16] P. Unnikrishnan, B. Thornton, T. Ura, Y. Nose, A conical laser light-sectioning method for navigation of autonomous underwater vehicles for internal inspection of pipelines, *in: OCEANS 2009: Balancing Technology with Future Needs*, Bremen, Germany, pp. 1–9, 2009.
- [17] A. Nassiraei, Y. Kawamura, A. Ahrary, Y. Mikuriya, K. Ishii, A new approach to the sewer pipe inspection: fully autonomous mobile robot "KANTARO", 32nd Annual Conference on IEEE Industrial Electronics, pp. 4088–4093, 2006.
- [18] A. Ahrary, A. A. Nassiraei, M. Ishikawa, A study of an autonomous mobile robot for a sewer inspection system, *Artificial Life and Robotics*, Vol. 11, pp. 23–27, 2007.
- [19] D. H. Lee, H. Moon, H. R. Choi, Autonomous navigation of in-pipe working robot in unknown pipeline environment, *IEEE International Conference on Robotics and Automation*, pp. 1559–1564, 2011.
- [20] D. H. Lee, H. Moon, H. R. Choi, Landmark detection of in-pipe working robot using line-laser beam projection, *International Conference on Control Automation and Systems*, pp. 611–615, 2010.
- [21] B. Zhuang, W. Zhang, D. Cui, Noncontact laser sensor for pipe inner wall inspection, *Optical Engineering*, Vol. 37, pp. 1643–1647, 1998.
- [22] S. K. Sinha, F. Karray, Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm, *IEEE Transactions Neural Networks*, Vol. 13, pp. 393–401, 2002.
- [23] Z. Wang, Z. Hui, T. Wei, T. Yan, A new structured-laser-base system for measuring the 3D inner-contour of pipe figure components, *Russian Journal of Nondestructive Testing*, Vol. 43, pp. 414–422, 2007.
- [24] J. S. Yoon, M. Sagong, J. Lee, K. sung Lee, Feature extraction of a concrete tunnel liner from 3d laser scanning data, *NDT & E International*, Vol. 42, pp. 97–105, 2009.
- [25] Instructions of sewer network visual inspection, Management and Planning Organisation of Islamic Republic of Iran, Iran, p. 25, 2015. (in Persian فارسي)

6- نتيجه گيري

در این پژوهش برای دستیابی به اطلاعات کمی و ارزیابی وضعیت لوله، یک مکانیزم ابزار اندازه گیری، طراحی، ساخته و چند بسته نرمافزاری (APIهایی) در نرمافزار مهندسی سالیدورکز نوشته و توسعه داده شد و در قالب پنجره محاورهای در این نرمافزار به صورت افزونه قرار گرفت. برای آزمون موردی این ابزارها و صحتسنجی عملکرد آنها، آزمایش و مانعهایی طراحی شدند. طی این آزمایش مختصات ده پروفیل سطح مقطع در هر هفت سانتیمتر از لوله تحت بازرسی، اندازه گیری شد و پروفیل همه سطح مقطعها در محیط طراحی نرمافزار رسم و لوله تحت بازرسی، به صورت سه بعدی مدلسازی شد. مساحت سطح مقطعهای مورد بازرسی، در هر بخش محاسبه شده و با مساحت واقعی سطح مقطع متناظر آن مقایسه شد و نشان داده شد که پروفیلهای مدلسازی شده و واقعی بسیار نزدیک به یکدگیر بوده و دقت فرایند مناسب است. همچنین شرایط لوله از نظر کیفی و کمی، طبق فرایند مناسب است. همچنین شرایط لوله از نظر کیفی و کمی، طبق دستورالعمل اجرایی بازرسی از لوله و رابطه منینگ، به وسیله بستههای نرمافزاری (APIهای) توسعه داده شده، ارزیابی و نتایج در پنجره محاورهای نرمافزاری (APIهای) توسعه داده شده، ارزیابی و نتایج در پنجره محاورهای

ج**دول 1** مساحت مقاطع- واقعی و اندازه گیری شده (میلیمتر مربع)

Table 1 Real and measured cross-sections areas (mm²)

اختلاف	اندازه گیری شده	واقعی	 شماره مقطع
-8.75	31407.18	31415.93	1
-693.87	29712.13	30406.00	2
-6.71	31409.22	31415.93	3
-309.84	30318.41	30628.25	4
-302.94	30027.69	30330.63	5
-6.75	31409.18	31415.93	6
-5.99	314.9094	31415.93	7
-37.98	30920.80	3095.78	8
-5.35	31410.58	31415.93	9
-7.31	31408.62	31415.93	10

جدول 2 ابعاد مانعهای مورد استفاده و موقعیت قرارگیری آنها از نقطه شروع فرایند **Table 2** Dimensions and locations of used obstacles from process starting point

<u> </u>					
زاویه قرار گیری	طول قرارگیری	طول	عرض	ارتفاع	شماره
(درجه)	(cm)	(mm)	(mm)	(mm)	مانع
40	10	55.8	21.2	24	1
175	10	45	21.1	23	2
180	30	58.3	21	24	3
215	30	79.2	27.5	9.4	4
5	40	79.7	26.8	10	5
140	40	36.8	25	11	6
220	40	37	25	10	7
310	70	54	21	21.4	8

Fig. 9 Modeled pipe by gathered data through measuring device in SOLIDWORKS within coded APIs

شکل 9 لوله مدلسازی شده در نرمافزار سالیدورکز به وسیله برنامه نوشته شده در این نرمافزار با استفاده از اطلاعات بهدست آمده به کمک ابزار اندازه گیری