

ماهنامه علمى پژوهشى

مهندسي مكانيك مدرس

بهینه سازی تطبیقی ردیابی مسیر ربات ماهر با استفاده از استراتژی کنترل ولتاژ

 1 پیمان بهمنی 1 ، مهدی ادریسی 2 ، سید حمید موسویان

1- فارغ التحصيل كارشناسي ارشد، گروه مهندسي برق، دانشگاه اصفهان، اصفهان

2- استادیار، گروه مهندسی برق، دانشگاه اصفهان، اصفهان

* اصفهان، کد پستی 8174673441، edrisi@eng.ui.ac.ir

چکیده

اطلاعات مقاله

در این مقاله، روند طراحی یک کنترل کننده بهینه پایدار تطبیقی بر خط به منظور ردیابی مسیر بازوی ربات با استفاده از روش تنظیم کننده خطی مربعی ارائه شده است. به طور کلی بکارگیری این روش در نهایت منجر به حل یک معادله دیفرانسیل ریکاتی میشود که در قالب متعارف خود در یک فرم معکوس با استفاده از شرایط نهایی به صورت خارج از خط حل میشود و در حالت خاص سیستم تغییر ناپذیر با زمان و زمان بی نهایت به معادله جبری ریکاتی تبدیل میشود. ولی در این مقاله معادله دیفرانسیل ریکاتی مورد نظر به عنوان یک تابع تطبیقی جهت کنترل ولتاژ موتور در نظر گرفته شده و به فرم رو به جلو با استفاده از شرایط اولیه به صورت برخط به منظور پاسخدهی مناسب به تغییرات محیط، حل میشود. در ضمن پایداری مجانبی خطای ردیابی این کنترل کننده با انتخاب یک تابع لیاپانف مناسب تضمین میگردد. از طرف دیگر، عدم قطعیت-های پارامتری مانند تغییرات پارامتر جرم بازوی ربات و همچنین اغتشاشات خارجی محیط در مطالعات شبیهسازیها در نظر گرفته شده است و بدین سبب مقاوم بودن طراحی نشان داده شده است. نتایج حاصل از شبیهسازیها به منظور ردیابی سیگنال مرجع در حضور اغتشاشات خارجی و عدم قطعیت مدل، نشان دهنده برتری کنترل کننده بهینه ولتاژ پیشنهادی و صرف کمتر توان سیگنال کنترلی مورد نیاز (ولتاژ موتورهای بازوهای ربات و همچنین روش-ربات) در مقایسه با توان مصرفی موتورهای کنترل کنندهای بهینه مشابه اعمال شده بر روی گشتاور موتورهای بازوهای ربات و همچنین روش-ربای طراحی کلاسیک کنترل کننده، نظیر PID است.

مقاله پژوهشی کامل دریافت: 28 آذر 1394 پذیرش: 28 اسفند 1394 ارائه در سایت: 07 فروردین 1395 *کلید واژگان:* ربات ماهر حداقل سازی انرژی کنترل ولتاژ موتور تنظیم کننده خطی مربعی

Adaptive Optimization in Path Tracking of Manipulator Using Voltage Control Strategy

Peyman Bahmany, Mehdi Edrisi*, Sayed Hamid Mousavian

Department of Electrical Engineering, University of Isfahan, Isfahan, Iran * P.O.B. 81746-73441, Isfahan, Iran, edrisi@eng.ui.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 19 December 2015 Accepted 17 February 2016 Available Online 26 March 2016

Keywords:
Manipulator
Energy Minimization
Motor Voltage Control Strategy

ABSTRACT

In this article, the linear quadratic regulator method (LQR) for voltage control of a linear time-varying model of a robot is used to design an online adaptive optimal stable controller to trace the robot arm path. Normally, offline solving of Riccati differential equations in backward with final conditions for linear time-varying system or converting the Riccati differential equation to an algebraic one in linear time-invariant system is inevitable in LQR. However, in this paper, the differential Riccati equations are considered as the adaptation laws along with a voltage control strategy to be solved online in forward method with initial conditions. Choosing a proper Lyapunov function guarantees the asymptotic stability of the tracking. Furthermore, parametric model uncertainties such as mass parameter variation and external disturbances which affect the dynamics of the model are also taken into account. Simulation results show the energy used by dc motors of the voltage optimal control strategy is less than that of the torque control strategy and as good as the classical PID one. The superior performance of the voltage optimal control over torque control strategy is also shown in presence of disturbance.

1-مقدمه

امروزه رباتهای ماهر (بازوهای مکانیکی ماهر) در بسیاری از کاربردهای صنعتی مورد استفاده قرار می گیرند. به همین دلیل در سالهای اخیر مسأله کنترل این رباتها برای اهداف گوناگون اعم از ردیابی مسیر [2,1] و پایدارسازی مورد توجه بسیاری از محققین بوده است [4,3].

مسأله بهینه سازی انرژی ربات (ماهر) یک مسأله مهم و اساسی در برنامهریزی مسیر ربات است. این مسأله توجه محققان زیادی را به ویژه در دو دهه گذشته به خود جلب کرده است. یکی از انگیزههای اصلی برای استفاده از

رباتها، افزایش بهره وری با استفاده از افزایش سرعت ربات است. در واقع یک رویکرد عملی برای حداقل سازی انرژی مصرفی موتور، حداقل سازی سطح ولتاژ مورد نیاز حرکت موتور جهت انجام وظایف محوله با توجه به محدودیتهای فیزیکی است [5-7]. حتی در برخی موارد بهینه سازی، مسأله انرژی مصرف شده به عنوان اصلی ترین معیار در نظر گرفته می شود. این امر در مواردی که مقدار انرژی در دسترس کم باشد نمود بیشتری پیدا می کند. به طور کلی می توان تحقیقات انجام گرفته توسط محققان در زمینه بازوهای رباتیک را به سه دسته مختلف تقسیم بندی نمود: 1) مسأله طراحی

مسير 1 [8]، 2 مسأله تخمين موقعيت 2 [9]، 2 مسأله كنترل 3 [11,10]. در اين مقاله به دسته سوم یعنی طراحی و حل مسأله کنترل بهینه تطبیقی بازوهای رباتیک پرداخته می شود.

برخی از تحقیقات در زمینه کنترل بهینه سیستمهای رباتیک و نقد آنها به شرح ذیل است. در سال 1998 با توجه به دینامیک موتور بر حسب ولتاژ و جریان و با بدست آوردن معادلات همیلتونی و ژاکوبین و انتخاب یک تابع هزینه مناسب، توان مصرفی موتور، بهینه سازی شد و با انتخاب تابع لیایانف مناسب و طراحی یک رویت گر، پایداری مجانبی آن تضمین شد [1]. در مقاله [12]، یک سیستم جدید شامل جایابی مکان پورت بهینه تعریف شده است. در مقاله [2]، یک روش بهینه سازی برای مدل ارتباط مکانیکی حرکات دست انسان استفاده شده است. در مقاله [3]، مسأله برنامه ريزي حركت با انتصاب یک مسیر انرژی بهینه بررسی شده است. در مقاله [4]، یک چارچوب بهینه سازی برای چرخه حرکت غیرمتقارن در حضور اختلال، ارائه شده است. در مقاله [13]، مسأله طراحي مسير بهينه بازوي مكانيكي با چند درجه آزادي در فضای سه بعدی با قابلیت بدون برخورد با موانع مطرح و حل گردیده است. در مرجع [14]، روند طراحي مسير بهينه براي ربات ماهر با مفاصل انعطاف پذير ارائه مىشود. روش حل آن، بر اساس حل غيرمستقيم مسأله كنترل بهينه مى-

در سال 2013 برای کنترل ربات از استراتژی کنترل ولتاژ استفاده شد. بنابراین برای محاسبه دینامیک و کنترل ربات، ولتاژ موتور به عنوان ورودی سیستم استفاده شد و یک کنترل کننده فازی طراحی گردید. علاوه بر این ضرایب کنترل کننده با استفاده از الگوریتم PSO در حالت خارج از خط تنظیم گردید [5].

در مرجع [15]، با در نظر گرفتن برخی از شاخصهای مهم مانند جانمایی قطبهای حلقه بسته سیستم، سرعت پاسخ و حداکثر سطح تلاش کنترلی، و ترکیب آنها در یک تابع هدف، یک مسأله بهینهسازی برای پیدا کردن ماتریسهای وزنی مطلوب در کنترل کننده LQR تعریف و حل گردید. برای حل این مسأله بهینهسازی، چهار روش بهینه سازی هوشمند خارج از خط الگوريتم ژنتيک، بهينهسازي اجتماع ذرات، تكامل تفاضلي، والگوريتم رقابت استعماری استفاده شده است. روش پیشنهادی در این مقاله به مدل غیرخطی ربات اعمال گردیده و نتایج بدست آمده از چهار روش بهینهسازی با یکدیگر مقایسه شدهاند. در سال 2013 یک استراتژی کنترل ولتاژ براساس قضیه كنترل امپدانس بكار گرفته شده است [6]. نتایج این مقاله در مقایسه با كنترل امپدانس بكار رفته براساس استراتژی كنترل گشتاور ربات، نشان داده است که روش پیشنهادی از نظر محاسباتی سادهتر و مقاومتر بوده است، و با توجه به این رویکرد، میتوان یک ربات با مدل دینامیکی نامشخص را بخوبی كنترل نمود.

هر یک از این تکنیکهای ذکر شده دارای مزایا و معایبی هستند و از این رو بایستی به دقت، الگوریتم کنترل موردنظر بر اساس شرایط واقعی و ملزومات آن انتخاب گردد. در نهایت با بررسی هر یک از این مقالات مرتبط با روشهای کنترل بهینه فوق و همچنین چندین مرجع دیگر وابسته به آنها، میتوان بیان نمود که هر یک از تکنیکهای ذکر شده پیشین حداقل دارای یکی از قیود محدود کننده زیر هستند:

• در نظر نگرفتن برخی عوامل تأثیر گذار در عملکرد کنترل کننده

طراحی شده نظیر اغتشاشات خارجی محیط و نویزهای اندازه گیری [6,3-12,8-16]، همچنین عدم بررسی تأثیرات وجود عدم قطعیتهای پارامتری در مدل سیستم در حین عملکرد سیستم [17-12,8,7,4-2]

- لزوم دسترسی به دادههای ورودی و خروجی سیستم در شرایط مختلف حرکت ربات جهت استنتاج قوانین فازی به صورت جامع [5,1] و یا آموزش شبكه عصبي [9-11]،
- نداشتن تضمین تحلیلی پایداری و عملکرد مقاوم کنترل کننده در روش ييشنهادي [15,8,3]،
- خطی سازی معادلات غیرخطی ربات ماهر، و نادیده گرفتن اثر کوپلینگ و ترمهای غیرخطی معادلات سیستم، در نظر نگرفتن دینامیک موتورهای الکتریکی بازوها به عنوان محرکههای سیستم در دینامیک کل مدل جهت بكارگیری در روند طراحی كنترل كننده موردنیاز [16,15,13,7,3].

بنابراین نهایتا به منظور رفع نواقص و محدودیتهای روشهای پیشین در زمینه کنترل حرکت بازوهای ربات ماهر، در این مقاله از روش کنترل بهینه تطبیقی، با توجه با قابلیتهای تئوری و پیادهسازی آن، به عنوان یک کنترلکننده مناسب و کارآمد به منظور ردیابی مسیرهای مرجع با توانایی تضعیف تأثیر اغتشاشات خارجی محیط کاری و تأثیرات عدم قطعیتهای پارامتری در مدل سیستم در حین عملکرد سیستم، برای مدل غیرخطی سه درجه آزادی ربات ماهر استفاده می گردد.

روند طراحی کنترلکننده بهینه پایدار بر خط، به منظور ردیابی بهینه مسیر بازوی ربات جهت برآورده نمودن اهداف طراحی حداقل انرژی به این صورت است که از روش تنظیم کننده خطی مربعی استفاده شده است. یعنی در روش کنترل پیشنهادی از مدل دینامیکی موتورهای الکتریکی در مدل سازی کل سیستم استفاده می شود و سپس از تابع همیلتونی و مشتقات نسبی آن نسبت به ورودی، حالت و حالت کمکی استفاده می گردد. به طور کلی بکار گیری این روش در نهایت منجر به حل یک معادله دیفرانسیل ریکاتی میشود که در قالب متعارف خود در یک فرم معکوس با استفاده از شرایط نهایی به صورت خارج از خط حل می شود و یا با در نظر گرفتن افق نامحدود در مسأله در حالت خاص به معادله جبری ریکاتی تبدیل میشود. ولی در این مقاله معادله دیفرانسیل ریکاتی مورد نظر به عنوان یک تابع تطبیقی درنظر گرفته شده و به فرم رو به جلو با استفاده از شرایط اولیه به صورت برخط به منظور پاسخدهی مناسب به تغییرات محیط، حل شده است. ساختار مقاله به شرح زیر است: در بخش 2، برخی از ویژگیهای مهم کلی مدل ریاضی بازوهای ربات در قالب مقدمات مسأله معرفی شده است. در بخش 3، روش پیشنهادی طراحی کنترلکننده بهینه به منظور ردیابی مسیر بازوهای ربات ارائه گردیده است. در بخش 4، پایداری مجانبی خطای ردیابی کنترل کننده بهینه تضمین می گردد. در بخش 5، به معرفی و چگونگی ترکیب نمودن معادلات دینامیکی ربات ماهر تحت بررسی با دینامیک محرکههای بازوها، و در نهایت استخراج مدل کل سیستم بر حسب ورودی ولتاژ موتورها پرداخته می شود. در بخش 6، نتایج شبیه سازی های حاصل از اعمال کنترل-کننده بهینه بر روی ولتاژ موتورهای بازوی ربات (ماهر) استوانه ای در سه وضعیت متفاوت نشان داده شده است و در نهایت در بخش 7، نتیجه گیری کلی مقاله بیان می گردد.

2-فرمول بندى و بيان مقدمات مسأله

معادله حرکت بازوهای مکانیکی ربات با n درجه آزادی با درنظر گرفتن نیروی

¹⁻ Trajectory Planning

²⁻ Position Estimation 3- Control

 $\left[18
ight]^{2}$ تماس 1 و محدودیتها 2 ، در فضای مفصلی 3 به فرم

 $M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = \tau$ (1) بیان می شود، که در آن $q \in R^{n \times 1}$ بیانگر بردار عمومی از موقعیت مفاصل شامل زاویه های مفاصل و یا جابجایی های بازوی مکانیکی ربات، $C(q, \dot{q}) \in R^{n \times n}$ ماتریس متقارن و مثبت معین اینرسی ربات، $C(q, \dot{q}) \in R^{n \times n}$ ماتریس نیروی جانب مرکز و کوریولیس، $C(q, \dot{q}) \in R^{n \times n}$ در بردارنده نیروهای گرانشی و $C(q, \dot{q}) \in R^{n \times n}$ گشتاور یا نیروی اعمالی جهت کنترل ربات است.

ماتریس متقارن و مثبت معین اینرسی در فضای کاری دارای محدودیت معادله (2) است [19.18].

 $m_1 \; |x|^2 \leq x^{\mathrm{T}} \; M(x_1) \; x \leq m_2 \; |x|^2$ (2) که در آن m_2, m_1 ثابتهای عددی مثبت و معلوم هستند.

ماتریس نامتقارن نیروی جانب مرکز و کوریولیس نیز از رابطه (3) تخمین زده شده است [19,18]

 $x^{\mathrm{T}}(\dot{M}(x_1) - 2C(x_1, x_2)) x = 0$ (3)

که این ماتریس شرط (4) را برآورده می
نماید $\|\mathcal{C}(x_1,x_2))\,x_2\| \leq k_c\;|x_2|^{\rm T} \eqno(4)$

و در آن $k_c \in R^n$ میباشد.

اکنون با تعریف دو متغیر حالت، و ورودی به صورت

$$x_{1} = q \in R^{n \times 1}$$

$$x_{2} = \dot{q} \in R^{n \times 1}$$

$$u = \tau \in R^{n \times 1}$$
(5)

میتوان مدل ریاضی بازوهای ربات معادله (1) را به صورت معادله (6) در فضای کاری بازنویسی نمود:

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = M^{-1}(x_1)[\tau - G(x_1) - C(x_1, x_2) x_2]$
(6)

allow a substrated in the proof of the proof of

$$A = \begin{bmatrix} 0 & I \\ 0 & -M^{-1}(x_1) C(x_1, x_2) \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ M^{-1}(x_1) \end{bmatrix}$$
(7)

که در آن $I \in R^{n \times n}$ بیانگر ماتریس واحد و $X = [x_1, x_2]^{\mathrm{T}}$ بردار حالت با x_2, x_1 اتخاذ شده از رابطه (5) است. اثبات قضیه کنترل پذیری سیستم متغیر با زمان رابطه (7) به طور کامل در مرجع [16] آمده است.

3- طراحي كنترل كننده بهينه به منظور رديابي مسير

در این بخش، یک کنترل کننده بهینه برای حل مسأله ردیابی مسیر با هدف دستیابی به خطای ردیابی صفر طراحی می گردد، به طوری که حالات سیستم بازوی ربات به مسیرهای مطلوب همگرا شوند.

[7] قانون کنترل بهینه پیشنهادی به صورت رابطه (8) تعریف گردیده است $u=G(x_1)+\hat{u}$ (8) که در آن \hat{u} بیانگر یک ترم کنترل بهینه کمکی است که در ادامه بدست خواهد آمد. با جایگزینی رابطه (8) در رابطه (7)، مدل ریاضی اصلاح شده بازوهای ربات به فرم

$$\dot{x} = A x + B \hat{u} \tag{9}$$

بدست می آید، که در آن A و B در رابطه (7) تعریف شدهاند.

خطای ردیابی \widetilde{x} نیز به صورت

 $\tilde{x} = x - x_d$ (10) تعریف می گردد، که در آن x_d بیانگر مرجع مورد نظر (مسیر مطلوب) است. همچنین با تعریف مدل مرجع به صورت

 $\dot{x}_d = A \, x_d$ (11) که در (7) تعریف شده است، بنابراین با استفاده از عمل تفریق که در آن A در (7) تعریف شده است، بنابراین با استم حلقه بسته به رابطه (10) از (9)، بر اساس رابطه (10)، خطای ردیابی سیستم حلقه بسته به صورت

 $\dot{\tilde{x}} = A \ \tilde{x} + B \ \hat{u} \tag{12}$

بدست می آید، که در آن A و B در رابطه (7) تعریف شدهاند. اکنون، ترم کنترل بهینه کمکی \hat{u} بدست خواهد آمد.

شاخص عملکرد یک تنظیم کننده خطی مربعی درجه دو برای این سیستم به صورت رابطه (13) است [22-20]

 $j = \frac{1}{2} \tilde{x}_f^{\mathrm{T}} H \tilde{x}_f + \frac{1}{2} \int_{t_0}^{t_f} (\tilde{x}^{\mathrm{T}} Q \, \tilde{x} + \hat{u}^{\mathrm{T}} R \, \hat{u}) dt \tag{13}$ $0 \leq H \in R^{2n \times 2n} \quad .0 \leq Q \in R^{2n \times 2n} \quad .0 < R \in R^{n \times n} \quad \text{ن قد در آن } \tilde{x} = [\tilde{x}_1, \tilde{x}_2]^{\mathrm{T}} \in R^{2n \times 1}$ ورودی $\tilde{x} = [\tilde{x}_1, \tilde{x}_2]^{\mathrm{T}} \in R^{2n \times 1}$ سیستم و \tilde{x}_f حالات پایانی در شبیه سازی هستند [7].

معادلات كنترل كننده بهينه براى روش تنظيم كننده خطى مربعى به فرم معادلات (14) بدست مى آيند [21,20]

$$h(\tilde{x}, u, \lambda) = \frac{1}{2} [\tilde{x}^{T} Q \, \tilde{x} + \hat{u}^{T} R \, \hat{u}] + \lambda^{T} [A \, \tilde{x} + B \, \hat{u}]$$

$$0 = \frac{\partial h(\tilde{x}, \hat{u}, \lambda)}{\partial u}$$

$$\dot{\tilde{x}} = \frac{\partial h(\tilde{x}, \hat{u}, \lambda)}{\partial \lambda}$$

$$\dot{\lambda} = -\frac{\partial h(\tilde{x}, \hat{u}, \lambda)}{\partial \tilde{x}}$$
(14)

که در آن $R \in R^{2n \times 1}$ بیانگر همیلتونی و $h(\tilde{x}, \hat{u}, \lambda) \in R$ به عنوان حالت کمکی معلوم به صورت معادله (15) تعریف میشود.

 $\lambda = S \, \widetilde{x} \tag{15}$

البته ماتریس S به صورت $S \in R^{2n \times 2n}$ میباشد. از معادله دوم رابطه (14)، واضح است که

$$\frac{\partial h(\tilde{x}, \hat{u}, \lambda)}{\partial u} = R \,\hat{u} + B^{\mathrm{T}} \,\lambda = 0 \tag{16}$$

و در نهایت می توان ترم کنترل بهینه کمکی \hat{u} را با استفاده از (16)، به صورت معادله (17) بدست آورد.

$$\hat{u} = -R^{-1} B^{\mathrm{T}} \lambda = -R^{-1} B^{\mathrm{T}} S \tilde{x} \tag{17}$$

بنابراین با مشتق گیری از رابطه (15)، و همچنین بر اساس معادله چهارم رابطه (14)، بترتیب روابط (18) و (19) بدست میآید.

$$\dot{\lambda} = \dot{S}\,\tilde{x} + S\,\dot{\tilde{x}}\tag{18}$$

$$\dot{\lambda} = -Q \, \tilde{x} - A^{\mathrm{T}} \, \lambda \tag{19}$$

اکنون، بترتیب با جایگزینی روابط (18)، سپس (12) و پس از آن (17)، و در نهایت (15)، در رابطه نهایی (19)، سرانجام رابطه کلی معادله دیفرانسیل (20) بدست میآید.

 $[\dot{S}+Q-S\,B\,R^{-1}\,B^{\mathrm{T}}\,S+S\,A+A^{\mathrm{T}}\,S]\,\tilde{x}=0$ (20) حال با در نظر گرفتن (20) و بازنویسی آن به فرم $a(x)\,b(x)=0$ و بازنویسی آن به فرم $b(x)=\tilde{x}$ و $a(x)=\dot{S}+Q-SBR^{-1}B^{\mathrm{T}}S+SA+A^{\mathrm{T}}S$ و از آنجایی که $b(x)=\dot{x}$ نمی تواند صفر باشد، از این رو a(x)=0 است. بنابراین، در نهایت معادله ماتریس دیفرانسیل ریکاتی به فرم $\dot{S}+Q-S\,B\,R^{-1}\,B^{\mathrm{T}}\,S+S\,A+A^{\mathrm{T}}\,S=0$ (21)

بدست ميآيد [7].

¹⁻ The Contact Force

²⁻ The Constraints

³⁻ The Joint Space

 $L_a = \frac{\gamma}{2} \, \tilde{x}^{\mathrm{T}} \, S \, \tilde{x}$

قابل ذكر است كه تابع كنترل اصلى در اين مقاله، رابطه (8) در نظر گرفته

این مقاله را به عنوان جمع بندی این بخش در قالب قضیه 1، بیان نمود.

قضیه 1 [16,7]: برای سیستم شرح داده شده با رابطه (7)، به منظور ردیابی مسير مطلوب توسط بازوهاي ربات، روابط (8)، (17) و (21) به عنوان روابط اصلی در طراحی کنترل کننده بهینه محسوب می شوند.

اثبات : روند اثبات قضیه 1، از رابطه (7) تا رابطه (21) می باشد که به تفصیل بیان گردید.

در نهایت با توجه به مطالب و روابط ارائه شده در این بخش، می توان نمایی از روند پیاده سازی بخش سیستم کنترل بهینه تطبیقی پیشنهادی را مطابق "شكل 1" نشان داد.

4- بررسی پایداری کنترل کننده بهینه پیشنهادی

با بیان حل مسأله مطرح شده در قالب قضیه 2 و اثبات آن، پایداری کنترل-کننده بهینه پیشنهادی، در این بخش بررسی می گردد.

قضيه 2 [7]: خطاى رديابي سيستم حلقه بسته با كنترل كننده بهينه روابط (8)، (17) و (21) برای بازوی ربات رابطه (7)، پایدار مجانبی است و خطای ردیابی \widetilde{x} به

 $\lim_{T\to\infty} \sup \tilde{x}^{\mathrm{T}}(Q + SBR^{-1}B^{\mathrm{T}}S) \,\tilde{x} = 0$ (22)همگرا خواهد شد (همگرایی به صفر)، که در آن T بیانگر زمان نهایی است.

شده است که حاوی ترمهای گرانشی بازوهای ربات است. بنابراین، رابطه شناخته شده و معلوم (17)، به عنوان یک تابع کمکی برای رابطه (8) می-باشد. علاوه بر این، در این مقاله، رابطه (21) به عنوان یک تابع تطبیقی در نظر گرفته می شود، به طوری که در زمانهای یکسانی که کنترل کننده در حال انجام کار است، این رابطه به صورت برخط حل شده و تابع کنترل بروز رسانی اکنون می توان نتیجه نهایی روند طراحی کنترل کننده بهینه پیشنهادی در

 $\dot{L}_a = -\frac{\gamma}{2} \tilde{\chi}^{\mathrm{T}} (Q + S B R^{-1} B^{\mathrm{T}} S) \tilde{\chi}$ (24)بنابراین با استفاده از رابطه (24)، خطای ردیابی به طور مجانبی پایدار است وابط T انتگرال گیری از رابطه (24) در بازه T تا T روابط [24].

اثبات : بدین منظور یک تابع کاندیدای لیایانف مثبت به صورت رابطه (23)

سپس، براساس روند ارائه شده در مرجع [7]، ابتدا با جایگزینی (17) در (12) و سپس با مشتق گیری از رابطه (23)، دو رابطه مهم بدست میآید که به کمک

آنها و با جانشینی رابطه \dot{S} از رابطه (21)، در نهایت رابطه (24) بدست

$$\int_{0}^{T} \left[\frac{\gamma}{2} \, \tilde{x}^{\mathrm{T}} (Q + S \, B \, R^{-1} \, B^{\mathrm{T}} \, S) \, \tilde{x} \, \right] dt \, \leq L_{1,0} - L_{1,T} \, \leq L_{1,0}$$

$$\lim_{T \to \infty} \sup_{T} \frac{1}{T} \int_{0}^{T} \left[\frac{\gamma}{2} \, \tilde{x}^{\mathrm{T}} (Q + S \, B \, R^{-1} \, B^{\mathrm{T}} \, S) \, \tilde{x} \, \right] dt \leq$$

 $L_{1.0} \lim_{T \to \infty} \sup_{T} \frac{1}{T} = 0$ (25)

انتخاب مي گردد [7].

مي آيد.

بدست میآید، که بر این اساس با میل نمودن $T o \infty$ ، آنگاه عبارت حاصل می گردد که این موضوع بیانگر $\widetilde{x}^{\mathrm{T}}(Q+SBR^{-1}B^{\mathrm{T}}S)\,\widetilde{x}=0$ صحت عبارت رابطه (22) مىباشد. همچنين با توجه به رابطه (21)، ماتريس مثبت معین است. بنابراین، ترم $SBR^{-1}B^{T}S$ از رابطه (24) مثبت معین Sاست که این نکته، نتیجه اصلی قضیه فوق را تضمین می کند [7].

نکته 1: بایستی بیان نمود که روش کنترل بهینه بکار برده شده در این مقاله، به راحتی می تواند به صورت برخط بر روی هر نوع بازوی ربات صلب که مدل ریاضی سیستم آن بتواند به فرم (1) بازنویسی شود، پیاده سازی و اعمال

نکته 2: مراجع [27-25] برای پیشبرد روند کنترلی خود، مشابه به این مقاله، از روش تنظیم کننده خطی مربعی استفاده کردهاند، اما معادله دیفرانسیل ریکاتی این سه مرجع در یک فرم معکوس با استفاده از شرایط نهایی حل شده است، ولی در این مقاله، معادله دیفرانسیل ریکاتی مورد نظر به عنوان یک دیدگاه متفاوت، به صورت یک تابع تطبیقی در نظر گرفته شده است و در یک فرم رو به جلو با استفاده از شرایط اولیه حل گردیده است.

5- معرفي معادلات ديناميكي بازوهاي ربات ماهر

اکنون در این بخش به معرفی معادلات دینامیکی بازوهای ربات ماهر به عنوان یک مدل سیستم نمونه جهت اعمال کنترل کننده بهینه پیشنهادی به آن، با هدف ردیابی مسیر مطلوب پرداخته میشود.

از آنجایی که در پیاده سازیهای عملی ممکن است قوانین کنترل برای ربات ماهر شامل مسائلی از قبیل محدودیتهای سیستم، اشباع محرکها، چترینگ، محاسبات و زمان پردازش طولانی باشد، و همچنین در برخی مراجع، قوانین کنترل اغلب به عنوان دستورات کنترل گشتاور ارائه شده است [7]، در حالی که در سیستم واقعی نمیتوان آنها را به طور مستقیم به ورودی موتورهای الکتریکی اعمال نمود. بنابراین، در این مقاله به جای بکارگیری قوانین کنترل بر روی گشتاور موتور، قوانین کنترل ولتاژ موتور بر روی ربات ماهر مطرح می گردد که در آن موتورهای الکتریکی توسط کنترل ولتاژ هدایت میشوند. از این رو در بخش 5-1، برخلاف مرجع [7]، مدل ریاضی بازوی ربات ماهر بر حسب ولتاژ به عنوان یک دیدگاه متفاوت، بیان می گردد تا در بخش 6 مقاله، نهایتا کنترلکننده بهینه پیشنهادی بر روی این معادلات اعمال گردد و عملکرد سیستم در مقایسه با مرجع [7] مورد تحلیل و بررسی قرار گیرد.

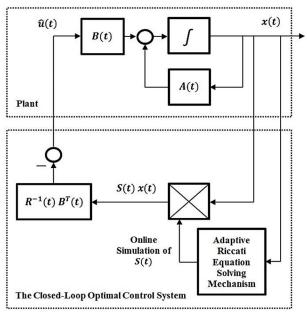


Fig. 1 A view of the implementation of the proposed adaptive optimal control system

شکل 1 نمایی از روند پیاده سازی بخش سیستم کنترل بهینه تطبیقی پیشنهادی

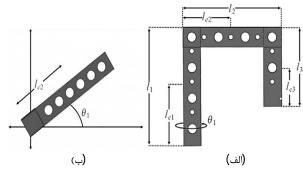


Fig. 3 Cylindrical robotic arm (a) lateral sight, (b) upper sight [8]

شكل 3 ربات ماهر استوانه اى (الف) از نماى كنار، (ب) از نماى بالا [8]

جدول 1 پارامترهای ربات [8,7]

Table 1 Robot parameters [7, 8]

Table 1 Robot parameters [7, 8]						
مقدار	واحد	توضيح	پارامتر			
0.3	m	طول بازو اول	l_1			
0.3	m	طول بازو دوم	l_2			
0.2	m	طول بازو سوم	l_3			
0.46	kg	جرم بازو اول	m_1			
0.34	kg	جرم بازو دوم	m_2			
0.34	kg	جرم بازو سوم	m_3			
0.04624	kg m²	اینرسی مربوط به بازو اول	J_1			
0.02545	kg m²	اینرسی مربوط به بازو دوم	J_2			
0.03616	kg m²	اینرسی مربوط به بازو سوم	J_3			

محرکه الکتریکی) ایجاد نیرو و افزایش آن به نرمی و با سرعت کم، و کاهش آن به نرمی و بدون هیچگونه شوک است. در واقع یک بازوی ربات الکتریکی توسط موتورهای الکتریکی هدایت و راه اندازی میشود، که قوانین کنترل برای چنین رباتهایی، به صورت ورودیهایی برای موتورهای الکتریکی آنها، ارائه میشود. از این رو، این مسأله زمانی واقعی تر به نظر میرسد که، دینامیک ربات شامل مدل ریاضی موتورهای الکتریکی ربات نیز باشد. به طور نمونه در مرجع [28]، به مسأله مدلسازی دینامیکی یک ربات صنعتی که توسط سرو موتورهای راه اندازی میشود، پرداخته شده است.

در این مقاله به منظور دسترسی به سطح بالایی از قابلیت کنترل پذیری مطلوب و دقیق ربات ماهر در ردیابی مسیر مرجع، از موتورهای الکتریکی dc 40 ولت [17]) برای مفصلها استفاده شده است. از این رو بر اساس معادلات ریاضی حرکت یک موتور d آهنربای دائم 2 ، یک فرم ماتریسی از معادلات دینامیکی این گونه موتورها برای $k=1,\ldots,n$ به صورت $k=1,\ldots,n$ معادلات دینامیکی این گونه موتورها برای $k=1,\ldots,n$ به $k=1,\ldots,n$ معادلات دینامیکی این گونه موتورها برای $k=1,\ldots,n$ به صورت $k=1,\ldots,n$ معادلات دینامیکی این گونه موتورها برای $k=1,\ldots,n$

 $R^{-1}{}_k K_{mk} V_k - \tau_k/r_k$ (27) بیان می گردد، و برای k = 1 با فرض $t_k = \tau_l$ رابطه (27) برابر می شود با $t_k = 1$ با فرض $t_k = 1$ با فرض $t_k = 1$ برابر می شود با $t_k = 1$ برابر $t_k = 1$ برابر می گردد، و برای $t_k = 1$ با فرض $t_k = 1$ برابر و برابر (28) برابر معنوان ورودی $t_k = 1$ بردار ولتاژ موتور به عنوان ورودی $t_k = 1$ بردار زاویه موتور و پارامترهای $t_k = 1$ بردار زاویه موتور و پارامترهای $t_k = 1$ بردار زاویه موتور و پارامترهای $t_k = 1$ بردار ترتیب ماتریس $t_k = 1$ برگرتیب ماتریس $t_k = 1$ برگرتیب می شرود، و باین نوع موتور، از نظر مقاومت و نرخ کاهش دنده $t_k = 1$ موتور می باشند، و البته در این نوع موتور، از نظر مقاومت و نرخ کاهش دنده $t_k = 1$

1-5- بیان مدل ریاضی بازوی ربات برحسب ولتاژ به همراه دینامیک محرکهها

در این مقاله، از روش لاگرانژ اویلر [19,16] برای بدست آوردن مدل ریاضی 3 و 1 بازوهای ربات استفاده شده است که این روابط بتر تیب برای بازوهای 1، 2 و 3 بازوهای ربات نشان داده شده در "شکل 2" بصورت معادلات رابطه (26) حاصل می گردند $[J_{13}+(m_2+4m_3)l_{c2}^2]\ddot{\theta}_1+2(m_2+4m_3)l_{c2}\dot{\theta}_1\dot{t}_{c2}=\tau_1$ $(m_2+4m_3)\ddot{l}_{c2}-(m_2+4m_3)l_{c2}\dot{\theta}_1^2=\tau_2$

 m_3 $l_{c3} - m_3$ $g = \tau_3$ (26) که در آن، τ_1 بیانگر گشتاور مورد نیاز به منظور ایجاد حرکت چرخشی بازوی τ_1 و ترمهای τ_2 و τ_3 برتیب بیانگر نیروهای مورد نیاز به منظور ایجاد حرکت انتقالی بازوهای 2 و 3 میباشند (در واقع τ_1 و τ_2 و رودیهای حرکت انتقالی بازوهای 2 و 3 میباشند (در واقع τ_3 و τ_2 و رودیهای سیستم هستند)، و ترم [9.81 [m/s²] برابر با شتاب گرانشی زمین است. همچنین با توجه به (5)، میتوان بیان نمود که در رابطه (26) متغیرهای حالت سیستم به صورت τ_1 و τ_2 بیانگر زاویه مفصل چرخشی، τ_3 و τ_3 بیانگر طول محورهایی هستند که از مفصلهای 2 و 3 تا مرکز جرم بازوهای 2 و 3 ادامه می یابند [16].

"شکل 2"، در واقع نمای کلی از بازوی ربات ماهر استوانهای تحت بررسی را به همراه محدوده فضای کاری آن، نشان می دهد، و "شکل 8" نیز ربات ماهر استوانه ای را از دو نمای کنار و بالا، به منظور معرفی دقیق عناصر مدل ربات نشان می دهد. همچنین توصیف هر یک از پارامترهای مدل دینامیکی رابطه (26) به همراه مقادیر عددی آنها در جدول 1 ارائه شده است.

از آنجایی که هر محور حرکت در ربات ماهر دارای یک کارانداز (راه انداز 1) میباشد که تأمین کنندههای محرک مفصلها در آن عبارتاند از: نیروی الکتریکی، نیروی هیدرولیکی و نیروی پنوماتیکی. از این رو در این مقاله برای ربات ماهر مورد نظر، فرض شده است که نیروی (انرژی) الکتریکی سبب تأمین نیروی محرکه مفصلها می 2 ردد. یکی از مزیتهای این سیستمها (دارای نیروی

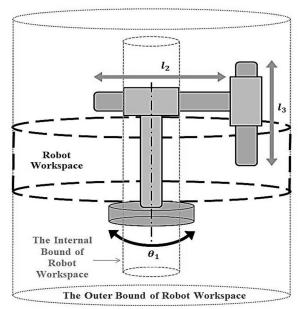


Fig. 2 Overview of cylindrical robotic arm with its workspace area

شکل 2 نمای کلی از ربات ماهر استوانه ای به همراه محدوده فضای کاری آن

²⁻ Permanent Magnet DC Motor

³⁻ Back EMF Constant

⁴⁻ Damping

⁵⁻ Reduction Gear Ratio

$$M(q) = \begin{bmatrix} J_{13} + k_{\theta}^{2}(m_{2} + 4m_{3})x_{12}^{2} & 0 & 0 \\ 0 & m_{2} + 4m_{3} & 0 \\ 0 & 0 & m_{3} \end{bmatrix}$$

$$C(q, \dot{q}) = \begin{bmatrix} k_{\theta}^{2}(m_{2} + 4 m_{3})x_{12}x_{22} & k_{\theta}(m_{2} + 4 m_{3})x_{12}x_{21} & 0 \\ -k_{\theta}(m_{2} + 4 m_{3})x_{12}x_{21} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$G(q) = \begin{bmatrix} 0 \\ 0 \\ -m_3 g \end{bmatrix}$$

در نهایت می توان بر اساس روابط (32) تا (35)، معادلات دینامیکی کلی ربات ماهر بدست آمده برحسب ولتاژ را که با مدل دینامیکی موتور (31) بگونهعنوان راه انداز الکتریکی آن ترکیب گردیده است براساس رابطه (31) بگونهای بدست آورد که در آن ترمهای (a,\dot{q}) (a,\dot{q}) و (a,\dot{q}) (بالحاظ نمودن اندیسهای عددی هریک از پارامترهای مدل سیستم و موتورها) بترتیب به صورت ماتریسهای موجود در رابطه (36) بدست آیند.

$$D(x_1) = \begin{bmatrix} R_1 K_{m1}^{-1} (J_{m1} r_1^{-1} + r_1 (J_{13} + k_{\theta}^2 (m_2 + 4 m_3) x_{12}^2) \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$R_2 K_{m2}^{-1} (J_{m2} r_2^{-1} + r_2 (m_2 + 4 m_3))$$

$$0 \\ R_3 K_{m2}^{-1} (J_{m2} r_2^{-1} + r_3 (m_3))$$

$$\begin{split} N(x_1,x_2) &= \\ \begin{bmatrix} R_1 \ K_{m1}^{-1} \ B_{m1} \ r_1^{-1} + \ R_1 \ K_{m1}^{-1} \ r_1 \left(k_\theta^2 \left(m_2 + 4 \ m_3 \right) x_{12} \ x_{22} \right) + K_{b1} \ r_1^{-1} \\ R_2 \ K_{m2}^{-1} \ r_2 (-k_\theta \left(m_2 + 4 \ m_3 \right) x_{12} \ x_{21}) \\ 0 \\ R_1 \ K_{m1}^{-1} \ r_1 \left(k_\theta \left(m_2 + 4 \ m_3 \right) x_{12} \ x_{21} \right) \\ R_2 \ K_{m2}^{-1} \ B_{m2} \ r_2^{-1} + K_{b2} \ r_2^{-1} \\ 0 \\ R_3 \ K_{m3}^{-1} \ B_{m3} \ r^{-1} + K_{b3} \ r_3^{-1} \end{bmatrix} \end{split}$$

$$W(x_1) = \begin{bmatrix} 0 \\ 0 \\ -R_3 K_{m_3}^{-1} r_3(m_3 g) \end{bmatrix}$$
 (36)

همچنین بر اساس روابط (1) و (5) تا (7)، حالتها و ورودیهای مدل سیستم نهایی با n=3 (ربات ماهر با 3 درجه آزادی) برابر است با :

$$\begin{array}{l} x_{11}=q_1=\theta_1\;,\; x_{12}=q_2=l_{c2}\;,\; x_{13}=q_3=l_{c3}\\ x_{21}=\dot{q}_1=\dot{\theta}_1\;,\; x_{22}=\dot{q}_2=\dot{l}_{c2}\;,\; x_{23}=\dot{q}_3=\dot{l}_{c3}\\ u_1=v_1\;,\; u_2=v_2\;,\; u_3=v_3 \end{array}$$

6- شبيه سازيها

اکنون در این بخش به منظور راستی آزمایی تحلیلهای تئوری، و نشان دادن کارایی روش پیشنهادی، نتایج شبیه سازیها و عملکرد کنترل کننده بهینه پیشنهادی از بخش 3 (اعمال شده بر روی ولتاژ ورودی موتور بازوهای ربات ماهر استوانه ای) در حالات مختلفی مورد بررسی قرار می گیرد و نتایج آن ارائه می گردد. از طرفی روش پیشنهادی با روش بکار گرفته شده در مرجع [7] که بر اساس کنترل بهینه مبتنی بر گشتاور موتورها است، مقایسه شده و نشان داده خواهد شد که میزان انرژی بکار رفته برای موتور در بازوهای ربات ماهر در روش پیشنهادی در حالات مختلف در این مطالعه، بسیار کمتر است.

1-6- تعیین مدل عددی دینامیک کل ربات و جایگذاری دادهها

اكنون به منظور آغاز اجراي اعمال الگوريتم پيشنهادي، ابتدا بايستي بيان نمود

عددی $K_m = K_b$ در نظر گرفته شده است [18,17].

اشکل 4^{c} ، نمایی از بلوک دیاگرام کلی یک سیستم موتور dc را نشان میدهد، و همچنین جدول 2 نیز مقادیر عددی بکار رفته در پارامترهای مدل دینامیکی رابطه (28) را ارائه می کند.

$$R K_m^{-1} (J_m r^{-1} + r M(q)) \ddot{q} + (R K_m^{-1} B_m r^{-1} + R K_m^{-1} r C(q, \dot{q}) + K_b r^{-1}) \dot{q} + R K_m^{-1} r G(q) = V$$
(30)

می توان مدل دینامیکی کلی ربات ماهر برحسب ولتاژ به همراه مدل موتورهای اول مینامیکی کلی ربات ماهر برحسب ولتاژ به هراه (31) در نظر گرفت، dc $D(q) \ddot{q} + N(q, \dot{q}) \dot{q} + W(q) = V$ (31)

که در آن ترمهای D(q)، $N(q,\dot{q})$ و W(q) بترتیب به صورت روابط (32) له در آن ترمهای $N(q,\dot{q})$ بیان می گردند.

$$D(q) = R K_m^{-1} (J_m r^{-1} + r M(q))$$
(32)

$$N(q,\dot{q}) = R K_m^{-1} B_m r^{-1} + R K_m^{-1} r C(q,\dot{q}) + K_b r^{-1}$$
 (33)

$$W(q) = R K_m^{-1} r G(q)$$
 (34)

در روش پیشنهادی کنترل مبتنی بر ولتاژ ربات ماهر که دینامیک کلی آن با مدل ریاضی موتور dc بازوی ربات ترکیب شده، می توان با اضافه نمودن ضریب k_{θ} ربات ترکیب شده، می توان با اضافه نمودن ضریب k_{θ} روایای مفصل q_{0} و q_{0} را بترتیب با q_{0} و q_{0} موتور، به صورت روابط q_{0} و q_{0} و q_{0} و q_{0} و q_{0} متناسب کرد، از این رو حرکت چرخشی موتور (مفصل) بازوهای 2 و 3 به حرکت کشویی تبدیل می-مود. اکنون با توجه به این موضوع می توان مدل دینامیکی رابطه (26) را در فضای مفصلی به فرم رابطه (1) بازنویسی کرد، که در آن ترمهای M(q) و M(q) و M(q) برتیب به صورت روابط (35) بدست می آیند.

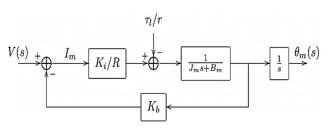


Fig. 4 Block diagram for dc motor system [18]

[18] dc بلوک دیاگرام برای سیستم موتور 4 بلوک

جدول 2 پارامترهای موتور dc بازوی ربات به همراه مقادیر عددی آنها [17] **Table 2** Parameters of dc motor of the cylindrical robotic arm with their numerical values [17]

B_m	1/ <i>r</i>	J_m	$K_b = K_m$	R	dc موتور
0.000817	107.82	0.0002	0.26	1.6	مربوط به بازو اول
0.00138	53.706	0.0002	0.26	1.6	مربوط به بازو دوم
0.00138	53.706	0.0002	0.26	1.6	مربوط به بازو سوم

6- محاسبه خطای ردیابی \widetilde{x} از رابطه (10)، و سپس حل توابع کنترل بهینه از روابط (8) و (17)، برای پیدا کردن $u=[u_1,\ u_2,\ u_3]^{\mathrm{T}}$ به منظور ردیابی مسیر بازوی ربات،

7- در نهایت، محاسبه و حل مدل ریاضی کل بازوی ربات در روابط (32) تا (36)، و (37)، برای پیدا کردن \dot{x} ،

8- تكرار روند شبيهسازىها بترتيب از مرحله 4 تا 7، به عنوان مرحله پايانى.

در این مقاله به منظور ایجاد یک دیدگاه مقایسهای برای تحلیل و بررسی عملکرد کنترل کننده ولتاژ بهینه تطبیقی پیشنهادی، از دو کنترل کننده مختلف به طورجداگانه شامل یک کنترل کننده PID اعمال شده بر روی گشتاور موتورهای بازوی ربات، با مقادیر 50، 5 و 0.1 بترتیب به عنوان بهرههای تناسبی، مشتقگیر و انتگرالگیر، و همچنین از نتایج طراحی یک کنترل کننده گشتاور بهینه تطبیقی، از مرجع [7] استفاده شده است. نتایج شبیهسازیها در این بخش در قالب نمودارهایی ارائه می گردد که شامل نتایج ردیابی مسیرهای (مرجع) مشخص برای بازوها و توابع کنترلی مورد نیاز برای هر یک از آنها هستند. این نمودارها برحسب کنترل بهینه ردیابی مسیر بازوهای ربات در سیستم حلقه بسته بلوک دیاگرام کلی "شکل 5" بدست آمدهاند، که بترتیب در ادامه مقاله به طور جداگانه در سه حالت مختلف

- $(d_i = d_o = 0)$ ردیابی مسیر مرجع بدون در نظر گرفتن اغتشاشات
 - $(d_i,d_o\neq 0)$ ردیابی مسیر مرجع با در نظر گرفتن اغتشاشات •
- ردیابی مسیر مرجع در حضور عدم قطعیت پارامتری در مدل سیستم ارائه و ارزیابی می گردند. بر اساس بلوک دیاگرام کلی انتخاب شده در "شکل 5"، اغتشاشات وارده به سیستم حلقه بسته، به دو صورت مختلف از جمله اغتشاش اعمال شده در ورودی سیستم (a_i) و اغتشاش اعمال شده در خروجی سیستم (a_o) ، برای بازوی ربات ماهر در نظر گرفته شده است.

حالت اول : ردیابی مسیر مرجع بدون در نظر گرفتن اغتشاشات $(d_i=d_o=0)$ در این حالت، هدف مورد نظر، ارزیابی عملکرد ردیابی مسیر توسط سیستم کنترل پیشنهادی بدون در نظر گرفتن اغتشاشات وارده به سیستم حلقه بسته است، به گونهای که در بلوک دیاگرام "شکل 5"، $d_i=d_o=0$ می باشند.

بدین منظور، در "شکل 6" عملکرد ردیابی مسیرهای مورد نظر انتخاب شده برای بازوهای 1, 2 و 8 ربات نشان داده شده است، که بر این اساس مشاهده می شود عمل ردیابی مسیر مرجع توسط کنترل کننده بهینه تطبیقی پیشنهادی اعمال شده بر روی ولتاژ موتورهای بازوی ربات و همچنین کنترل کننده بهینه اعمال شده بر روی گشتاور موتورهای بازوی ربات از مرجع [7]، به خوبی و با سرعت بالایی صورت پذیرفته است. در "شکل 7" توابع ولتاژ اعمالی برای تولید توابع کنترلی مورد نیاز بازوهای 1, 2 و 3 ربات ارائه گردیده است. این توابع بیانگر میزان ولتاژ سیگنال کنترلی اعمال شده به مدل دینامیکی یکپارچه شده ربات و موتورهای بازوهای ربات ماهر هستند. بر اساس یکپارچه شده ربات و موتورهای بازوهای ربات ماهر هستند. بر اساس نتایج بدست آمده از "شکل 7" مشاهده می گردد که کنترل بهینه تطبیقی

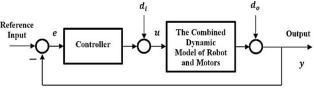


Fig. 5 Block diagram of the overall system with controller for simulations

شکل 5 بلوک دیاگرام کلی سیستم به همراه کنترلکننده به منظور شبیهسازیها

که ساختار کلی مدل دینامیکی اصلی سیستم تحت بررسی در واقع رابطه (31) میباشد که میتوان این معادله را مطابق آنچه که در بخش (31) ذکر شد، مشابه روابط (1)، (6) و (7) در نظر گرفته، و برای (31) به فرم (31) خکر (31) به (31) در نظر (31) در نظر

$$A = \begin{bmatrix} 0_{3\times3} & I_{3\times3} \\ 0_{3\times3} & -D^{-1}(x_1) N(x_1, x_2) \end{bmatrix}$$

$$B = \begin{bmatrix} 0_{3\times3} \\ D^{-1}(x_1) \end{bmatrix}$$
(37)

باز نویسی نمود، که به منظور بدست آوردن مقادیر عددی عناصر رابطه (37) اعم از A و B، می توان ابتدا با جایگذاری دادههای موجود از جدولهای 1 و 2، ماتریسهای عددی موجود در رابطه (35) را به صورت روابط (38) بدست آورد،

$$M(x_1) = \begin{bmatrix} 0.10785 + k_{\theta}^2 & 1.7 & x_{12}^2 & 0 & 0 \\ 0 & 1.7 & 0 \\ 0 & 0 & 0.34 \end{bmatrix}$$

$$C(x_1, x_2) = \begin{bmatrix} k_{\theta}^2 & 1.7 & x_{12} & x_{22} & k_{\theta} & 1.7 & x_{12} & x_{21} & 0 \\ -k_{\theta} & 1.7 & x_{12} & x_{21} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$G(x_1) = \begin{bmatrix} 0 \\ 0 \\ -3.3354 \end{bmatrix} \tag{38}$$

D(q) و پس از آن نیز بر اساس رابطه (38)، مقادیر عددی ترمهای D(q) و $D(q,\dot{q})$ و $D(q,\dot{q})$ و $D(q,\dot{q})$ و رابطه (36)، به طور دقیق مشخص می گردند. همچنین در نهایت با توجه به مسأله پیشنهادی مطرح شده برای کنترل ولتاژ در این مقاله، می توان مقدار ضریب D(q) و D(q) را در روابط مدل سیستم (35) و D(q) و D(q) جایگذاری نموده که بدین سبب، حرکت چرخشی بازوی D(q) و D(q) و D(q) به حرکت کشویی موتور بازوها، تبدیل می گردد.

شرایط اولیه این سیستم نیز به صورت

 $x_{11,0}=0.5 \, [{\rm rad}]$, $x_{12,0}=2.25 \, [{\rm m}]$, $x_{13,0}=0.75 \, [{\rm m}]$ $x_{21,0}=0 \, [{\rm rad/s}]$, $x_{22,0}=0 \, [{\rm m/s}]$, $x_{23,0}=0 \, [{\rm m/s}]$ c, idd $z_{23,0}=0 \, [{\rm$

2-6- بیان روش اجرا، شبیهسازی و بررسی نتایج

به منظور اجرای کلی شبیهسازیها، میتوان مراحل اجرای این روند را بترتیب به صورت زیر بیان نمود :

1- تعریف مدل عددی دینامیک کل ربات با تعیین نمودن مقادیر عددی ماتریسهای مشخص شده در روابط (32) تا (36)، و (37) به کمک دادههای موجود سیستم (پارامترهای ربات و موتور (dc) از جداول (dc) و مشخص کردن مقادیر شرایط اولیه سیستم از بخش (dc) به صورت

 $x_{1,0} = \begin{bmatrix} x_{11,0}, & x_{12,0}, & x_{13,0} \end{bmatrix}^{T}, x_{2,0} = \begin{bmatrix} x_{21,0}, & x_{22,0}, & x_{23,0} \end{bmatrix}^{T}$ -3 range in the second of the second

 $x_{d1} = [x_{d11}, \ x_{d12}, \ x_{d13}]^{\mathrm{T}}, x_{d2} = [x_{d21}, \ x_{d22}, \ x_{d23}]^{\mathrm{T}}$ (2 فرحله (2) شبیه سازی ها با شرایط اولیه انتخابی (2) شبیه سازی ها با شرایط اولیه اخترای

محاسبه و حل معادله ديفرانسيل ريكاتي (21)، به صورت تابع تطبيقي رابطه $\dot{S} = -Q + SBR^{-1}B^{T}S - SA - A^{T}S$ (40)

به صورت همزمان برای پیدا کردن S در یک فرم رو به جلو، با در نظر $Q={
m diag}\,(1)\ \epsilon\ R^{6 imes 6}$ ، $R={
m diag}\,(0.0002)\ \epsilon\ R^{3 imes 3}$ یرفتن $S(0)=0\ \epsilon\ R^{6 imes 6}$

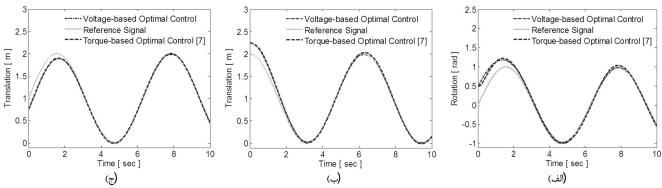


Fig. 6 Comparison of the tracking performance of the applied voltage and torque strategies to robot motors (a) Trajectory tracking of the link 1, (b) Trajectory tracking of the link 2, (c) Trajectory tracking of the link 3

شکل 6 مقایسه عملکرد ردیابی کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات (الف) ردیابی مسیر بازوی یک، (ب) ردیابی مسیر بازوی دو، (ج) ردیابی مسیر بازوی سه

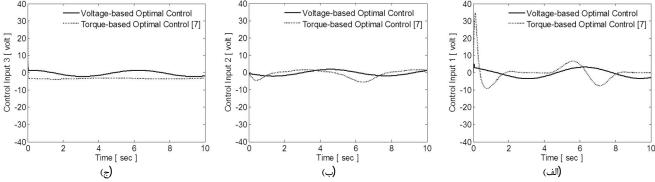
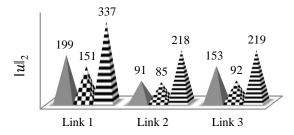


Fig. 7 Comparison of the applied voltage to produce the control signal to track the reference path by the voltage and torque strategy to robot motors (a) The optimal control voltage of the link 1, (b) The optimal control voltage of the link 2, (c) The optimal control voltage of the link 3

شکل 7 نمودارهای مقایسه عملکرد ولتاژهای اعمالی جهت تولید سیگنالهای کنترلی به منظور ردیابی مسیر مرجع توسط کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات

پیشنهادی اعمال شده بر روی ولتاژ موتور بازوهای ربات، در مقایسه با نتایج کنترل کننده بهینه [7]، توانسته است عملکرد سیستم حلقه بسته را بدلیل ردیابی بهتر و مؤثر تر مسیرهای مورد نظر با میزان توان سیگنال کنترلی کمتری،

(الف) سیگنال کنترلی بهینه ولتاژ بازوی یک، (ب) سیگنال کنترلی بهینه ولتاژ بازوی دو، (ج) سیگنال کنترلی بهینه ولتاژ بازوی سه


در ضمن به منظور مقایسه میزان سطح انرژی اعمالی در هر دو حالت اعمال روش کنترل بهینه بر روی ولتاژ (روش پیشنهادی) و گشتاور (مرجع [7]) موتورهای بازوهای ربات و همچنین کنترلکننده PID اعمال شده بر روی گشتاور موتورهای بازوهای ربات (مرجع [7])، نتایج میزان نرم 2 ولتاژ توابع کنترلی تولیدی کنترل کننده ها، در "شکل 8" آورده شده است. مقایسه نتایج بدست آمده از "شکل 7" و "شکل 8" نشان میدهد که سطح سیگنالهای کنترلی تولیدی (توابع ورودی) توسط کنترل کننده بهینه تطبیقی پیشنهادی نسبت به کنترل کننده بهینه [7]، و کنترل کننده بهینه [7]، و کنترل کننده روش کنترلی روش کنترلی با اعمال استراتژی روش کنترلی به بر روی ولتاژ موتورهای بازوهای ربات و با بکارگیری توابع کنترلی با سطح توان کمتری می توان به طور مؤثر تر عمل ردیابی را به انجام رسانده، که این نکته مهم ترین مزیت کنترل کننده پیشنهادی است.

حالت دوم : ردیابی مسیر مرجع با در نظر گرفتن اغتشاشات ($d_i,d_o\neq 0$) به منظور بررسی خواص پایداری و عملکرد مقاوم کنترل کننده بهینه تطبیقی پیشنهادی، مطالعات شبیهسازی این بخش تحت اعمال اغتشاشات کران دار وارده در دو حالت d_o و d_o بترتیب در ورودی و خروجی سیستم حلقه بسته

■ Motor Torque based LQR [7]

■ Proposed LQR

■ Motor Torque based PID [7]

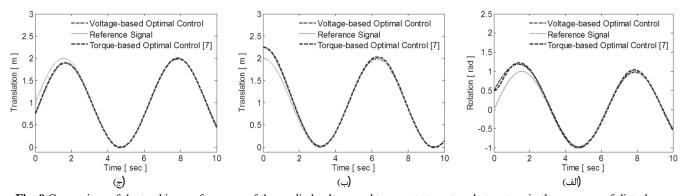
Fig. 8 Comparison of the norm 2 characteristic of the generated voltage of the control signal ($||u||_2$) by the applied voltage and torque strategy to robot motors

 $(\|u\|_2)$ مودار مقایسه مشخصه نرم دو ولتاژ سیگنال کنترلی تولیدی کنترل کننده مبتنی بر ولتاژ و گشتاور موتورهای ربات

مطابق "شکل 5" انجام می گیرد، و تأثیر هر یک از آنها به طور جداگانه در خروجی کل سیستم بررسی می گردد.

 d_i الف) تضعیف اثر اغتشاش

در این حالت، وضعیتی در نظر گرفته شده است که یک سیگنال اغتشاش به


صورت تابع سینوسی 5 هرتز با دامنه 5 در بازه زمانی 4 تا 6 ثانیه در ورودی سیستم اضافه شده، و سیستم حلقهبسته را مخدوش کرده است. در "شکل 9" و " شکل 10" بترتیب عملکرد ردیابی مسیرهای مورد نظر انتخاب شده، و همچنین ولتاژ توابع کنترلی مورد نیاز برای بازوهای 1، 2 و 3 ربات ارائه گردیده است. از نتایج "شکل 9" و " شکل 10" مشاهده میشود کنترل کننده بهینه اعمال شده بر روی ولتاژ موتورهای بازوی ربات در مقایسه با کنترل کننده بهینه [7] در روند ردیابی سیگنالهای مرجع، در برابر اغتشاش وارده به سیستم با توجه به میزان تأثیر ناچیزی که در پاسخ خروجی هر یک از بازوهای ربات و همچنین در توابع کنترلی (ورودی) سیستم حلقه بسته گذاشته است، مقاوم تر بوده و توانسته اثر اغتشاش وارده به سیستم را مورد تضعیف قرار دهد، و به نوعی خطای حالت دائمی ناشی از اعمال اغتشاش را به سرعت به صفربرساند، و عملکرد ردیابی مسیر مرجع را در حضور اغتشاش را به سرعت به مطلوب به انجام رساند، که این نکته حاکی از برتری کنترل کننده پیشنهادی میباشد.

علاوه بر این می توان با مقایسه نتایج ارائه شده در "شکل 11"، بین میزان نرم 2 ولتاژ توابع کنترلی تولیدی توسط کنترلکننده پیشنهادی و کنترلکننده بهینه مبتنی بر گشتاور [7]، و بر اساس "شکل 10"، به این نتیجه رسید که کنترلکننده پیشنهادی توانسته است عمل ردیابی سیگنال مرجع را با تلاش کنترلی کمتری (کوچکتر بودن میزان نرم 2 توابع کنترلی تولیدی) در حضور اغتشاش d_i ، به عنوان یک مزیت چشمگیر با موفقیت به انجام برساند.

 d_o ب تضعیف اثر اغتشاش (ب

در این حالت، وضعیتی در نظر گرفته شده است که یک سیگنال اغتشاش به صورت تابع سینوسی 5 هرتز با دامنه 1 در بازه زمانی 4 تا 6 ثانیه در خروجی سیستم اضافه شده، و سیستم حلقهبسته را مخدوش کرده است. در این حالت نيز، براساس نتايج "شكل 12" و "شكل 13" مشاهده مي شود كنترل كننده پیشنهادی در مقایسه با نتایج کنترل کننده بهینه [7] در برابر اغتشاش وارده به سیستم با توجه به میزان تأثیری که در پاسخ خروجی و در توابع کنترلی هر یک از بازوهای ربات گذاشته است، مقاومتر بوده و توانسته اثر اغتشاش وارده به سیستم را مورد تضعیف قرار دهد، و به نوعی خطای حالت دائمی ناشی از اعمال اغتشاش d_o را با سرعت بیشتری به صفر برساند. میتوان با مقایسه نتایج ارائه شده در "شکل 14"، بین میزان نرم 2 ولتاژ توابع کنترلی تولیدی برای هر یک از بازوها، توسط کنترلکننده پیشنهادی و کنترل کننده بهینه مبتنی بر گشتاور از مرجع [7]، و همچنین بر اساس "شكل 13"، به اين نتيجه رسيد كه كنترلكننده بهينه تطبيقي پيشنهادي توانسته است عمل ردیابی سیگنال مرجع را با تلاش کنترلی کمتری (کوچک-تر بودن میزان نرم 2 توابع کنترلی تولیدی) بدون به اشباع رفتن سیگنالهای کنترلی مورد نیاز برای هر یک از بازوها، در حضور اغتشاش d_o با موفقیت به انجام برساند، که این مبین برتری کنترل کننده پیشنهادی میباشد.

حالت سوم: ردیابی مسیر مرجع در حضور عدم قطعیت پارامتری در مدل سیستم در این حالت نیز برای بررسی خواص پایداری و عملکرد مقاوم کنترل کننده

Fig. 9 Comparison of the tracking performance of the applied voltage and torque strategy to robot motors in the presence of disturbance d_i (a) Trajectory tracking of the link 1, (b) Trajectory tracking of the link 2, (c) Trajectory tracking of the link 3 (ق) مقایسه عملکرد ردیابی کنترل کنندههای مبتنی بر ولتاژ و گستاور موتورهای ربات در حضور اغتشاش d_i (الف) ردیابی مسیر بازوی یک، (ب) ردیابی مسیر بازوی دو، (چ)

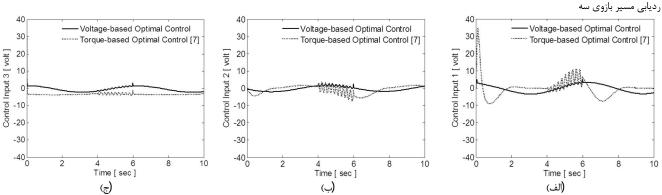


Fig. 10 Comparison of the generated voltage signal to track the reference path by the applied voltage and torque strategy to robot motors in the presence of disturbance d_i (a) The voltage of the link 1, (b) The voltage of the link 2, (c) The voltage of the link 3 شکل 10 نمودارهای مقایسه عملکرد ولتاژهای اعمالی جهت تولید سیگنالهای کنترلی به منظور ردیابی مسیر مرجع توسط کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ردیابی در حضور اغتشاش d_i (الف) ولتاژ بازوی یک، (ب) ولتاژ بازوی دو، (ج) ولتاژ بازوی سه

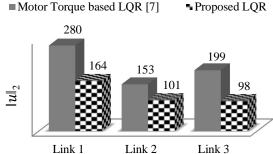
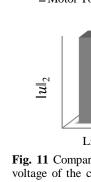



Fig. 11 Comparison of norm 2 characteristic of the generated voltage of the control signal ($||u||_2$) by the applied voltage and torque strategy to robot motors in the presence of disturbance d_i

 $(\|u\|_2)$ نمودار مقایسه مشخصه نرم دو ولتاژ سیگنال کنترلی تولیدی $u\|_2$ d_i کنترل کننده مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور اغتشاش

بهینه تطبیقی پیشنهادی در برابر عدم قطعیت پارامتری در مدل سیستم، شبیه- (Δm_3) سازیهای این بخش در حضور عدم قطعیت در پارامتر جرم لینک سوم صورت می پذیرد، که این عدم قطعیت به صورت 5 برابر مقدار نامی این پارامتر به فرم $\Delta m_3 = 5 \, m_3$ به عنوان فرض بدترین حالت، بکار برده شده است. در نهایت تأثیر عدم قطعیت فوق الذکر که از ثانیه 5 به بعد در مدل دینامیکی کل سیستم (در روابط (37)، و (32) تا (36)) در شبیهسازیها وارد می گردد، در خروجی کل سیستم حلقه بسته به طور جداگانه یک بار با کنترل کننده پیشنهادی و بار دیگر با کنترل کننده مرجع [7] مورد بررسی و تحلیل قرار می گیرد.

با کنترل کننده بهینه [7]، توانسته است در برابر اعمال عدم قطعیت یارامتری در مدل سیستم در ثانیه 5، مقاومت بالایی از خود نشان دهد و به نوعی افزایش ناگهانی جرم لینک سوم نتواسته است تأثیر چشمگیری در عملکرد این کنترل-کننده وارد نماید، در مقابل کنترل کننده بهینه [7]، پس از انحراف از مسیر مرجع در لحظه ثانیه 5، با تلاش کنترلی بزرگی، و با سرعت کمتری به همراه

7- نتيجه گيري

در این مقاله، نحوه طراحی مکانیزم یک کنترلکننده بهینه تطبیقی پایدار به منظور ردیابی مسیر بازوی ربات ماهر بیان شد. بدین صورت که به کمک یک تنظیم کننده خطی مربعی با بکار بردن یک تابع هزینه مناسب، انرژی سیستم و در نتیجه توان موتورهای بازوی ربات در ردیابی مسیر، بهینه گردید. از آنجایی که در کنترل بهینه کلاسیک در روش تنظیم کننده خطی مربعی، معادله دیفرانسیل ریکاتی مربوطه میبایست در یک فرم معکوس با استفاده از

یک تاخیر زمانی توانسته تأثیر این عدم قطعیت را جبران نماید.

نتایج شبیهسازی عملکرد سیستم حلقه بسته در برابر عدم قطعیت

یارامتری در مدل سیستم، و همچنین توابع کنترلی مورد نیاز جهت ردیابی مسیر مرجع، بترتیب در "شکل 15" و "شکل 16" برای بازوهای

1، 2 و 3ربات ارائه گردیده است. همچنین نتایج مقایسه بین میزان نرم

2 ولتاژ توابع کنترلی تولیدی توسط کنترلکننده پیشنهادی و کنترل-

كننده بهينه [7] در اين حالت نيز در شكل "17" نشان داده شده است. براساس این نتایج می توان نتیجه گرفت کنترل کننده پیشنهادی در مقایسه

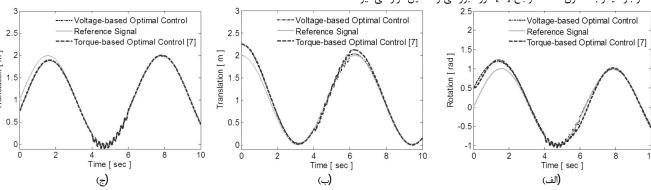


Fig. 12 Comparison of the tracking performance of the applied voltage and torque strategy to robot motors in the presence of disturbance d_o (a) Trajectory tracking of the link 1, (b) Trajectory tracking of the link 2, (c) Trajectory tracking of the link 3 شکل 12 مقایسه عملکرد ردیابی کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور اغتشاش d_0 (الف) ردیابی مسیر بازوی یک، (ب) ردیابی مسیر بازوی دو، (ج)

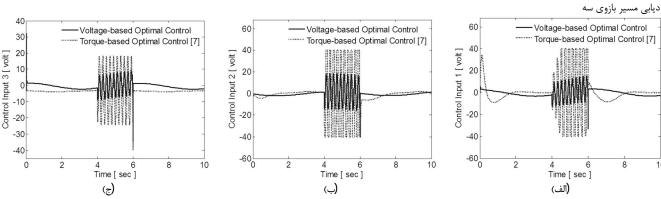


Fig. 13 Comparison of the generated control signal to track the reference path by the applied voltage and torque stratergy to robot motors in the presence of disturbance d_o (a) The voltage of the link 1, (b) The voltage of the link 2, (c) The voltage of the link 3 شکل 13 نمودارهای مقایسه عملکرد ولتاژهای اعمالی جهت تولید سیگنالهای کنترلی به منظور ردیابی مسیر مرجع توسط کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور اغتشاش d_o (الف) ولتاژ بازوی یک، (ب) ولتاژ بازوی دو، (ج) ولتاژ بازوی سه

■ Motor Torque based LQR [7] ■ Proposed LQR

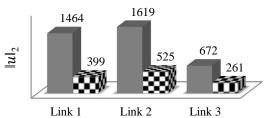


Fig. 14 Comparison of the norm 2 characteristic of the generated voltage of the control signal ($||u||_2$) by the applied voltage and $(\|u\|_2)$ نمودار مقایسه مشخصه نرم دو ولتاژ سیگنال کنترلی تولیدی $(\|u\|_2)$ d_o کنترل کننده مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور اغتشاش

torque strategy to robot motors in the presence of disturbance d_0

گشتاور اعمال شده در سایر مراجع دارای مزیت میباشد. در نهایت می توان بر اساس روند پیشنهادی فرمول بندی کنترل کننده بهینه تطبیقی پیشنهادی اعمال شده بر روی ولتاژ موتورهای بازوی ربات و همچنین نتایج حاصل از شبیهسازیهای انجام شده به منظور ارزیابی عملکرد کنترل کننده پیشنهادی در سه حالت ردیابی مسیر مرجع در حضور دو نوع اغتشاش خارجی و عدم قطعیت یارامتری در مدل سیستم، به چندین نمونه از مزایای بدست آمده در این مقاله در مقایسه با فعالیتهای مشابه انجام شده

به عنوان یک دیدگاه نو، در این مقاله در واقع رویکردی از دو روش

طراحی کنترل کنندههای بهینه و کنترل کنندههای پایدار تطبیقی برای ولتاژ

موتورهای بازوی ربات ترکیب و پیشنهاد شد. این الگوریتم پیشنهادی طراحی

شده به سادگی قابلیت اعمال به دسته وسیعی از بازوهای ربات با ساختارهای

متعارف را دارد. همچنین از آنجایی که در تحقیقات پیشین معمولا قوانین

کنترل حرکت بازوی ربات ماهر اغلب به صورت کنترل گشتاور (موتورهای بازوها) ارائه شده است، مشکلاتی در پیاده سازی عملی از قبیل محدودیت-

های موتورها ایجاد می گردد، از این رو در این مقاله به منظور رفع نواقص و

محدودیتهای مراجع پیشین، ابتدا با ترکیب مدل دینامیکی بازوی ربات و

موتورهای الکتریکی بازوها، قوانین کنترل پیشنهادی به جای اعمال بر گشتاور،

بر روی ولتاژ ورودی موتورهای بازوی ربات اعمال شده است، که این تکنیک

بکار گرفته شده، طراحی و شبیهسازیها را از نظر دینامیک ربات و موتورها، و همچنین کنترل آن به واقعیت نزدیکتر مینماید، و در مقایسه با کنترل

شرایط نهایی به صورت خارج از خط حل شود، در نتیجه سیستم نمی تواند به تغییرات محیط به صورت بر خط پاسخ مناسب بدهد. از این رو در این مقاله، معادله دیفرانسیل ریکاتی مورد نظر در روند طراحی کنترلکننده به عنوان یک تابع تطبیقی در نظر گرفته شده است و در یک فرم رو به جلو با استفاده از شرایط اولیه به صورت برخط حل گردید. از طرفی تابع کنترل پیشنهادی اصلی در این مقاله، حاوی شرایط گرانش در نظر گرفته شد تا عملکرد سیستم را به واقعیت نزدیک تر کند. علاوه بر این پایداری خطای ردیابی کنترل بهینه بازوی ربات نیز به طور مجانبی با استفاده از روش لیاپانف بررسی و تضمین گردید.

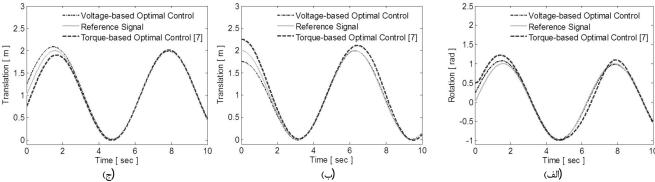


Fig. 15 Comparison of tracking performance of the applied voltage and torque strategy to robot motors in the presence of uncertainty in the system model parameter (a) Trajectory tracking of the link 1, (b) Trajectory tracking of the link 2, (c) Trajectory tracking of the link 3 شکل 15 مقایسه عملکرد ردیابی کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور عدم قطعیت در پارامتر مدل سیستم (الف) ردیابی مسیر بازوی یک، (ب) ردیابی

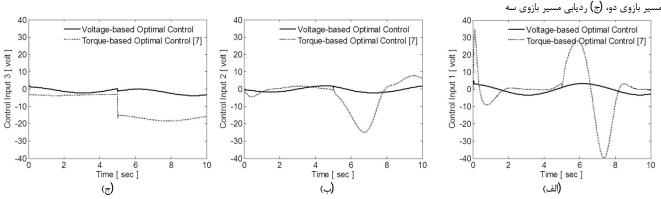
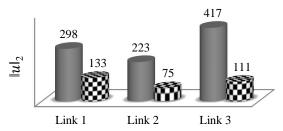



Fig. 16 Comparison of the generated voltage of the control signal to track the reference path by the applied voltage and torque strategy to robot motors in the presence of uncertainty in the system model parameter (a) The voltage of the link 1, (b) The voltage of the link 2, (c) The voltage of the link 3

شکل 16 نمودارهای مقایسه عملکرد ولتاژهای اعمالی جهت تولید سیگنالهای کنترلی به منظور ردیابی مسیر مرجع توسط کنترل کنندههای مبتنی بر ولتاژ و گشتاور موتورهای ربات در حضور عدم قطعیت در پارامتر مدل سیستم (الف) ولتاژ بازوی یک، (ب) ولتاژ بازوی دو، (ج) ولتاژ بازوی سه

- voltage control strategy, *Nonlinear Dynamics*, Vol. 74, No. 1-2, pp. 277–286, 2013.
- [7] C. Torres, Stable optimal control applied to a cylindrical robotic arm, Neural Computing and Applications, Vol. 24, No. 3-4, pp. 937-944, 2014.
- [8] J. Rubio, E. Garcia, J. Pacheco, Trajectory planning and collisions detector for robotic arms, *Neural Computing and Applications*, Vol. 21, No. 8, pp. 2105–2114, 2012.
- [9] I. Villaverde, M. Grana, Neuro-evolutionary mobile robotegomotion estimation with a 3D ToF camera, *Neural Computing and Applications*, Vol. 20, pp. 345–354, 2011.
- [10]H. Chaoui, P. Sicard, Adaptive Lyapunov-based neural network sensorless control of permanent magnet synchronous machines, *Neural Computing and Applications*, Vol. 20, pp. 717–727, 2011.
- [11]W-P. Lee, T-H. Yang, Combining GRN modeling anddemonstration-based programming for robot control, *Neural Computing and Applications*, Vol. 20, pp. 909–921, 2011.
- [12]R. Bauernschmitt, M. Feuerstein, J. Traub, EU. Schirmbeck, G. Klinker, R. Lange, Optimal port placement and enhanced guidance in robotically assisted cardiac surgery, *Surgical Endoscopy*, Vol. 21, No. 4, pp. 684–687, 2007.
- [13]F. Najafi, M. Karimi, M. Ghayour, Optimal trajectory planning and obstacle avoidance of a manipulator in the presence of ellipsoidal obstacles using genetic algorithms, *Modares Mechanical Engineering*, Vol. 10, No. 4, pp. 75-84, 2010. (In Persian
- [14]M. Salehi, A. Nikoobin, Optimal trajectory planning of flexible joint manipulator: maximum load carrying capacity minimum vibration, *Modares Mechanical Engineering*, Vol. 13, No. 14, pp. 68-80, 2013. (In Persian
- [15]S. Ghoreishi, M. Nekoui, S. Basiri, Optimal design of LQR weighting matrices based on intelligent optimization methods, *Intelligent Information Processing*, Vol. 2, No. 1, 2011.
- [16]J. Rubio, C. Torres, C. Aguilar, Optimal control based in a mathematical model applied to robotic arms, *Innovative Computing*, *Information and Control*, Vol. 7, No. 8, 2011.
- [17]M. Fateh, Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model, *Nonlinear Dynamics*, Vol. 61, No. 4, pp. 655–666, 2010.
- [18]M. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, Wiley, New York, 2006.
- [19]F. Lewis, D. Dawson, C. Abdallah, Control of Robot Manipulators, Theory and Practice, Second Edittion, New York, 2004.
- [20]E. Eronini, System Dynamics and Control, Thomson Learning, 1998. [21]F. Lewis, V. Syrmos, Optimal Control, Second Edittion, Wiley, 1995.
- [22]D. Naidu, Optimal Control Systems, CRC press, 2002.
- [23]C. Chen, C. Lee, Explicit matrix bounds of the solution for the continuous Riccati equation, *ICIC Express Letters*, Vol. 3, No. 2, pp. 147–152, 2009.
- [24]J. Rubio, C. Torres, R. Rivera, C. Hernandez, Comparison of four mathematical models for braking of a motorcycle, *Latin America Transactions*, Vol. 9, No. 5, pp. 630–637, 2011.
- [25]M. Jimenez-Lizarraga, A. Poznyak, Near–Nash equilibrium strategies for LQ differential games with inaccurate state information, Mathematical Problems in Engineering, pp. 1–24, 2006.
- [26]M. Jimenez-Lizarraga, B. Cruz Jose, New approach to solve algebraic constraints in linear systems using linear dynamical controllers, *Innovative Computing, Information and Control*, Vol. 6, No. 11, pp. 4879–4898, 2010.
- [27]M. Jimenez-Lizarraga, A. Poznyak, Necessary conditions for robust stackelberg equilibrium in a multi-model differential game, Optimal Control Applications and Methods, Vol. 33, No. 5, pp. 595–613, 2012.
- [28]J. Miro, A. White, Modelling an industrial manipulator a case study, Simulation Practice and Theory, Vol. 9, No. 6, pp. 293–319, 2002.

■ Motor Torque based LQR [7] ■ Proposed LQR

Fig. 17 Comparison of the norm 2 characteristic of the generated voltage of the control signal ($\|u\|_2$) by the applied voltage and torque strategy to robot motors in the presence of uncertainty in the system model parameter

 $\|u\|_2$ نمودار مقایسه مشخصه نرم دو ولتاژ سیگنال کنترلی تولیدی کنترل کننده مبتنی بر ولتاژ و گشتاور در حضور عدم قطعیت در پارامتر مدل سیستم

برای بازوهای مکانیکی ربات، از قبیل

- مقاوم بودن سیستم در برابر اغتشاشات خارجی و نامعینیهای مدل
 - زمان همگرایی محدود (با سرعت بالا)
 - عدم نیاز به دانستن کران بالای نامعینیها
 - قوانین کنترلی نسبتا ساده با میزان سطح انرژی پایین تر

اشاره نمود. در واقع با مقایسه عملکرد کنترل کننده پیشنهادی با یک کنترل کننده متعارف PID و کنترل کننده بهینه مبتنی بر کنترل گشتاور موتورهای بازوی ربات طراحی شده در سایر مقالات، میتوان برتری این روش را هم از نظر ردیابی مؤثرتر (با سرعت بالا) سیگنال مرجع (مسیرهای مورد نظر برای حرکت بازوی ربات) و هم کوچکتر بودن سطح سیگنال کنترلی مورد نیاز (با انرژی کمتر)، در شرایط نامعینی کلی (شامل عدم قطعیت مدل و اغتشاشات خارجی) نشان داده و از صحت طراحی انجام شده اطمینان حاصل نمود.

8-مراجع

- [1] B. Chen, H. Uang, C. Tseng, Robust tracking enhancement of robot systems including motor dynamics: a fuzzy based dynamic game approach, *IEEE Transactions on Fuzzy Systems*, Vol. 6, No. 4, pp. 538-552, 1998.
- [2] A. Biess, M. Nagurka, T. Flash, Simulation discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices, *Biological Cybernetics*, Vol. 95, pp. 31–53, 2006.
- [3] T. Chakraborti, A. Sengupta, A. Konar, R. Janarthanan, Application of swarm intelligence to a twofold optimization scheme for trajectory planning of a robot arm, In: Lecture notes in computer science, Swarm, Evolutionary and Memetic Computing, Vol. 7077, pp. 89–96, 2011.
- [4] D. Garcia, W. Schiehlen, 3D-simulation of human walking by parameter optimization, *Archive of Applied Mechanics*, Vol. 82, No. 4, pp. 533–556, 2012.
- [5] M. Moradi Zirkohi, M. Fateh, M. Shoorehdeli, Type -2 fuzzy control for a flexible joint robot using voltage control strategy, *Automation and Computing*, Vol. 10, No. 3, pp. 242-255, 2013.
- [6] M. Fateh, R. Babaghasabha, Impedance control of robots using