

ماهنامه علمى پژوهشى

مهندسي مكانيك مدرس

تعیین بهینه زمانهای سوئیچینگ کنترلر بنگ - بنگ برای سیستم نامعین جرثقیل سقفی

2 سیدعلی معافی 1 ، مجتبی معصومنژاد

- 1 دانشجوی دکتری، مهندسی مکانیک، موسسه آموزش عالی احرار، رشت
- 2- استادیار، مهندسی مکانیک، دانشکده فنی چمران دانشگاه فنی و حرفهای، رشت
 - *رشت، صندوق پستى 3756، masoumnezhad@tvu.ac.ir

ڃکيده

چ

اطلاعات مقاله

امروزه جرثقیل سقفی به صورت گسترده در صنایعی چون خودروسازی، بنادر و کشتیرانی و نیز جابه جایی و حمل بار در انبارها به کار گرفته می شود. اغلب مدل سازی هایی که از سیستمهای دینامیکی صنعتی صورت می گیرد دارای پارامترهای مخدوش با نویز یا اغتشاش است که مدل جرثقیل سقفی نیز از این امر مستثنی نیست. اغتشاش در سیستم می تواند ناشی از مدل آن و یا وسایل اندازه گیری باشد. فیلتر کالمن از روشهای کاراًمد شناسایی مدل و پالایش دادههای مخدوش است. با توجه به غیر خطی بودن مدل دینامیکی جرثقیل سقفی، فیلتر کالمن نامتقارن بهبودیافته با الگوریتم ژنتیک برای تخمین پارامترهای سیستم درنظر گرفته شده است. استفاده از نیروی کنترلی بنگ - بنگ از روشهای معمول در کنترلی پارامترهای بوئیچشن نیروی کنترلی در این مقاله ضمن استفاده از این کنترل، زمانهای سوئیچینگ آن با استفاده از الگوریتم ژنتیک برای سیستم مخدوش با نویز تعیین شده داست. هدف طراحی دستیابی به نقطه هدف در کمینه زمانی با کمترین میزان خطاست، همچنین با درنظر گرفتن ورودی کنترلر بنگ به مقایسه شرایط سیستم در نسبتهای جرمی مختلف پرداخته شده است. نتایج شبیه سازی بیانگر عملکرد بهینه الگوریتم کالمن بهبود یافته مقایسه شرایط سیستم در نسبتهای جرمی مختلف پرداخته شده است. نتایج شبیه سازی بیانگر عملکرد بهینه الگوریتم کالمن بهبود یافته نامتقارن در تعیین زمان سویئچینگ نقطه هدف در کمینه زمانی است.

مقاله پژوهشی کامل
دریافت: 26 آبان 1394
پذیرش: 60 فروردین 1395
ارائه در سایت: 29 اردیبهشت 1395
جرثقیل سقفی
نویز
فیلتر کالمن
فیلتر کالمن
کلتبر را بنگ - بنگ

Optimal Switching Times of Bang-Bang Controller for Uncertain Overhead Crane System

Seved Ali Moafi¹, Mojtaba Masoumnezhad^{2*}

- 1- Mechanical Engineering Department, Ahrar Institute of Technology and Higher Education, Rasht, Iran.
- 2- Mechanical Engineering Department, Chamran Faculty of Technical and Vocational University, Rasht, Iran.
- *P. O. B. 3756 Rasht, masoumnezhad@tvu.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 17 November 2015 Accepted 25 March 2016 Available Online 18 May 2016

Keywords: Overhead Crane Noise Filter Kalman Genetic Algorithm Bang-Bang Controller

ABSTRACT

These days overhead crane is widely used in different industries such as automobile, harbor, navigation and also transportation of tools in storerooms. Most models which are done through industrial dynamic systems include some vitiated parameters with noise and disturbance and overhead crane model is no exception. Disturbance in system can be due to its model or measuring tool. Kalman filter is a practical method in order to recognize the model and also filtration of disordered data. Given that overhead crane is a nonlinear model, asymmetric sigma-point Kalman filter improved by genetic algorithm (GA-ASKF) is intended to estimate system parameters. One of the common ways to controlling overhead crane parameters is using controlling force, Bang-Bang. By the way, function of Bang-Bang controller depends on controlling force switched times. In this paper, besides using this controller, its switched times are found by using genetic algorithm for noisy system. The design aim is to achieve the target point in minimum time with minimum error. Also, by considering Bang-Bang controller entrance part, the article compares the situation of the system in different mass relativeness. Simulation results shows improved performance of the GA-ASKF algorithm to determine the switching time of controller and also achieve the target point in minimum time.

عملکرد آن توسط پژوهشگران پیادهسازی شده است [3,2]. در این میان یکی از نیروهای کنترلی پرکاربرد بر روی سیستم جرثقیل سقفی، کنترلر بنگ بنگ است که در آن زمان های سوئیچ شدن نیرو، پارامتر تعیین کننده و تأثیر گذاری می باشد. در مراجع [5,4] به طراحی زمان مناسب سوئیچینگ جهت عملکرد مطلوب موقعیت و سرعت گاری و یاندول پرداخته شده است.

1 - مقدمه

کنترل سیستمهای دینامیکی پرکاربرد در صنعت از دیرباز مورد توجه بسیاری از مهندسین بوده است. با توجه به استفاده گسترده از جرثقیل سقفی در صنایع، شرایط مختلف کاری آن تاکنون توسط محققان مورد بررسی قرار گرفته است [1]. در شرایطی که جرثقیل سقفی دارای مدل دینامیکی غیرخطی و متغیر با زمان است، روشهای مختلف کنترلی جهت بهبود

¹ Bang-Bang

نتیجه انتخاب بهترین زمانهای سویئچشدن نیرو در کنترلر بنگ- بنگ، دستیابی به عملکرد بهینه و مطلوب سیستم است. به گونهای که در [6-7] بهینهسازی انتخاب زمانهای سوئیچینگ به کمک الگوریتم ژنتیک مد نظر قرار گرفته شده است.

در چند دهه گذشته توجه بسیاری از مهندسین کنترل به حل تقریبی مسائل معطوف شده است تا بتوانند از دادههای اندازه گیری شده دارای نویز، مقدار واقعی متغیر حالت را تخمین زنند و از معروف ترین روشهای حل تقریبی فیلتر کالمن است که بهعنوان ابزاری کارآمد در تخمین متغیرهای حالت سیستمهای دینامیکی مورد استفاده قرار می گیرد. در این میان استفاده از تکنیک نقاط سیگما¹برای سیستمهایی با مدل دینامیکی غیرخطی بسیار كارآمد بوده است [8]. گونههاى توسعه يافته فيلتر كالمن جهت بهبود عملكرد آن ارائه شده است [10,9]. در این گونهها مقاومتر کردن الگوریتم نسبت به اغتشاشات و عملکرد بهینه در کمینهسازی خطای تخمین منجربه نتایج مطلوب شده است. در [12,11] از فیلتر کالمن توسعهیافته برای تخمین متغیرهای حالت سیستمهای مکانیکی غیرخطی استفاده شده و علاوهبر آن استفاده از روشهای انطباقی نیز سبب بهبود عملکرد فیلتر کالمن شده است [13]. معصومنژاد و همكارانش براى نخستين بار فيلتر كالمن نامتقارن بهبوديافته با الگوريتم ژنتيک (GA-ASKF) را ارائه کردند [14]. در اين فیلتر از الگوریتم ژنتیک برای انتخاب بهینه ترکیب نامتقارن نقاط سیگما استفاده شده، به گونهای که به کارگیری این تکنیک سبب کمینه شدن میانگین مجذور خطای تخمین شده است. در مرجع [15] متغیرهای حالت سیستم جرثقیل سقفی تحت نیروی کنترلی بنگ- بنگ با روش فیلتر کالمن آنسنتد 2 (UKF) تخمین زده شده است. با این حال نویسندگان آن برای تعیین زمانهای سوئیچینگ کنترلر از نتایج مرجع [16] کمک گرفتهاند. بهترین انتخاب زمانهای سوئیچشدن نیروی کنترلی بنگ- بنگ، به کمک روش بهینهسازی الگوریتم ژنتیک، برای سیستم آغشته به نویز جرثقیل سقفی هدف مقاله کنونی است. سیستم دینامیکی جرثقیل سقفی بهصورت دو حالت طول کابل ثابت و طول کابل متغیر درنظر گرفته شده و مدلسازی برای هر یک از این دو حالت انجام شده است. به دلیل عملکرد بهبود یافته آن از فیلتر GA-ASKF برای تخمین پارامترهای سیستم نامعین جرثقیل سقفی استفاده شده است. کنترلر بنگ- بنگ برای دستیابی به بهترین رفتار متغیرهای حالت سیستم به کار گرفته شده است. از این رو زمانهای سوئیچینگ نیروی کنترلی، بهعنوان متغیر طراحی در بهینهسازی رفتار مناسب مشخصههای سیستم دینامیکی جرثقیل سقفی درنظر گرفته شدهاند و نقش مهم آنها در خلال نتایج تحلیل بررسی شده است. لازم است سیستم با کمترین نوسان، بیشترین دقت و سریعترین زمان به نقطه هدف برسد که تمامی این عوامل به واسطه کمینهسازی تابع ارزش طراحی، در تعیین عملکرد کنترلر لحاظ شده است. در تعیین تابع ارزش طراحی کمینهسازی میزان خطای سیستم و مدت زمان اجرای آن لحاظ شده است؛ بنابراین با کمینهسازی میزان خطا به کمک انتخاب بهترین زمانهای سوئیچینگ کنترلر، در راستای بهبود پایداری گام برداشته شده است. علاوهبر آن سیستم تحت مقادیر متفاوت وزنی محموله مدل شده و برای هر کدام از این حالتها بهترین عملکرد کنترلر تعیین شده است، همچنین نتایج حاصل از شبیهسازی در قالب جداول و نمودارها ارائه شده است.

2- مدل ديناميكي جر ثقيل سقفي

مدل دینامیکی زمان پیوسته یک جرثقیل سقفی نشان داده شده در شکل 1 بدين صورت است [1].

$$(M+m)\ddot{y}(t) - m\ddot{l}(t)\sin\theta(t) - 2m\dot{l}(t)\dot{\theta}(t)\cos\theta(t) - ml(t)\ddot{\theta}(t)\cos\theta(t) + ml(t)\sin\theta(t)\dot{\theta}^{2} = F(t)$$
(1)

$$-ml(t)\ddot{\theta}(t)\cos\theta(t) + ml(t)\sin\theta(t)\dot{\theta}^{2} = F(t)$$

$$\cos\theta(t) - l(t)\ddot{\theta}(t) - q\sin\theta(t) - 2\dot{l}(t)\dot{\theta}(t) = 0$$
(2)

O	راویه توسان بار	(rau)
у	جابهجایی گاری	(m)
m	جرم بار	(kg)
M	جرم گاری	(kg)

نسبت جرم بار به جرم گاری α

$$(\mathrm{m.s}^{-2})$$
 شتاب گرانش زمین g

$$(m)$$
 طول کابل حمل بار l

(N) نیروی خارجی وارد بر گاری

پارامتر α به صورت جداگانه به عنوان نسبت جرم بار به جرم گاری تعریف شده است.

3- فيلتر كالمن نامتقارن بهبوديافته با الكوريتم ژنتيك (GA-ASKF)

مدل دینامیکی زمان گسسته برای یک مسئله فیلترینگ غیرخطی بهصورت روابط (4,3) تعریف شده است [1].

$$x_{k+1} = f(x_k, u_k) + w_k$$
 (3)

$$y_k = h(x_k) + v_k \tag{4}$$

 v_k بردار متغیرهای حالت سیستم، $oldsymbol{y}_k$ بردار مشاهده گر و $oldsymbol{w}_k$ مقادیر نویزهای گوسی سفید و بهصورت رابطه (5) است.

$$w_k = N(0, Q)$$
 g $v_k = N(0, R)$ (5)

در UKF مرسوم فرآیند طراحی براساس اعمال نقاط سیگمای متقارن

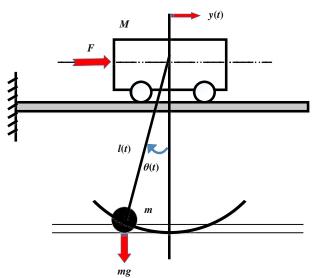


Fig. 1 Overhead crane model

شكل 1 مدل جرثقيل سقفى

¹ Sigma point ² Unscented Kalman Filter

حول نقطهای که در مرحله پیشین تخمین زده شده اجرا میشود. در حالی که در GA-ASKF جهت بهبود تخمین متغیرهای حالت سیستم دینامیکی، به جای نقاط سیگمای متقارن از نقاط سیگمای نامتقارن حول بردار حالت تخمین زده شده در گام پیشین استفاده شده است. به یقین در تبدیل آنسنتد از آنجا که نقاط سیگما توزیع متقارنی حول نقاط تخمین دارند، میانگین و کوواریانسشان در هر تکرار با میانگین و کوواریانس در تکرار ییشین برابر است. حال آن که در انتخاب نامتقارن آنها برای حفظ این ویژگی آماری باید تابع ارزش رابطه (6) کمینه شود. مشخصا عبارت دوم در رابطه (6) تضمین خواهد کرد که در شرایط میل کردن مقدار تابع ارزش به سمت صفر تحت بهینهسازی با الگوریتم ژنتیک مشخصات آماری نقاط سیگمای جدید با مشخصات آماری تکرار پیشین یکسان خواهد بود.

cost function = $\frac{1}{I} \times \text{norm}(\hat{x}_k - x_k)^{1/2}$ $+[\operatorname{norm}(\operatorname{mean}(\chi_{i,k-1})-\hat{\chi}_{k-1})+\operatorname{norm}(\operatorname{Var}(\chi_{i,k-1})$ $-\left(P_{i,k-1}\right)\right)^{\frac{1}{2}}$ (6)

بنابراین الگوریتم GA-ASKF شامل چهار مرحله است که به شرح زیر

مرحله نخست شرایط اولیه و به صورت روابط (8,7) است.

$$\hat{x}_0 = \mathsf{E}(x_0) \tag{7}$$

$$P_0 = \mathsf{E}(x_0 - \hat{x}_0)(x_0 - \hat{x}_0)^{\mathrm{T}} \tag{8}$$

و P_0 به ترتیب مقادیر بردار حالت نخستین و کوواریانس خطای $\hat{\chi}_0$

مرحله دوم محاسبه مقادیر نقاط سیگما و اعمال ضرایب وزنی است. در این مرحله تولید نقاط سیگما نیاز به 2L+2 پارامتر دارد که توسط الگوریتم 2L نتیک انتخاب می شوند که در آن L بردار بعد متغیر طراحی است پارامتر معیاری برای بیان فاصله همان تعداد نقاط سیگما نسبت ب ح ت تخمین زده شده در تکرار پیشین است. علاوهبر آن ضرایب طراحی φ و γ دو يارامتر وزنى است كه بهصورت بهينه توسط الگوريتم ژنتيك انتخاب ميشوند. محدوده یا فضای جست و جو برای یافتن نقاط سیگما بین [100,100-] تنظیم شده است؛ بنابراین محاسبه نقاط سیگمای نامتقارن به صورت روابط (13-9) است.

$$\chi_{0,k-1} = \hat{\chi}_{k-1} \tag{9}$$

$$\chi_{i,k-1} = \hat{\chi}_{k-1} + \zeta_i \sqrt{P_{i,k-1}} \tag{10}$$

$$\omega_0^{(m)} = \frac{\varphi}{(L+\varphi)} \tag{11}$$

$$\omega_0^{(C)} = \frac{\varphi}{(L+\varphi)} + \gamma \tag{12}$$

$$\omega_i^{(m)} = \omega_i^{(c)} = \frac{1}{2(L+\varphi)}$$
 (13)

 χ_i است. iاست، iاست و iاست و iاست، jاست، مقادیر نقاط سیگماست که براساس مقادیر میانگین \widehat{x} و کوواریانس P بردار حالت در تکرار پیشین χ_{k-1} محاسبه می شودند. $\omega_i^{(n)}$ و زنهای تبدیل آنسنتد مرتبط با i امین نقطه سیگماست.

مرحله سوم بهروزرسانی در زمان و به صورت روابط (14-17) است.

$$\chi_{i,k|k-1} = f(\chi_{i,k-1}, u_k)$$
 (14)

$$\hat{\chi}_{k}^{-} = \sum_{i=0}^{2L} \omega_{i}^{(m)} \chi_{i,k-1} \tag{15}$$

$$P_{k}^{-} = \sum_{i=0}^{2L} \omega_{i}^{(C)} \left[\chi_{i,k-1} - \hat{\chi}_{k}^{-} \right] \left[\chi_{i,k-1} - \hat{\chi}_{k}^{-} \right]^{T}$$
 (16)

 $\hat{y}_k^- = \sum\nolimits_{i = 0}^{2L} {\omega _i^{(m)} h(\chi _{i,k - 1})}$ (17)

k مقادیر میانگین تخمین زده شده از قبل y و در لحظه \hat{y}^- و \hat{x}^-

مرحله چهارم بهروزرسانی مقادیر اندازه گیری شده به صورت روابط (22-18) است.

$$P_{k|k-1}^{yy} = \sum_{i=0}^{2L} \omega_i^{(C)} \left[h(\chi_{i,k-1}) - \hat{y}_k^- \right] \left[h(\chi_{i,k-1}) - \hat{y}_k^- \right]^T$$
(18)
$$P_{k|k-1}^{xy} = \sum_{i=0}^{2L} \omega_i^{(C)} \left[\chi_{i,k-1} - \hat{x}_k^- \right] \left[h(\chi_{i,k-1}) - \hat{y}_k^- \right]^T$$
(19)

$$P_{k|k-1}^{xy} = \sum_{i=0}^{2L} \omega_i^{(C)} [\chi_{i,k-1} - \hat{\chi}_k^-] [h(\chi_{i,k-1}) - \hat{y}_k^-]^{\mathrm{T}}$$
(19)

$$K_k = (P_{k|k-1}^{xy}) \left(P_{k|k-1}^{yy} \right)^{-1} \tag{20}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - \hat{y}_k^-) \tag{21}$$

$$P_k = P_k^- - K_k P_{k|k-1}^{yy} K_k^{\text{T}}$$
 (22)

به ترتیب مقادیر P^{xy} ، P^{xy} نشان دهنده کوواریانس خطای K_k به ترتیب مقادیر کراس- کوواریانس ٔ خطای بین بردارهای حالت و مشاهده گر و ضریب کالمن

4- پیادہسازی سیستم دینامیکی جر ثقیل سقفی

در این مرحله جهت بررسی مقاوم بودن مدل جرثقیل سقفی به رابطه حالت سیستم و مشاهده گر، نویز با عنوان W_k, \mathcal{V}_k افزوده می شود، سپس با استفاده از فیلتر کالمن که فیلتر برگشتی کارا ست نویز سیستم فیلتر شده و مشخصههای پالایششده مورد بررسی قرار می گیرند. مدل دینامیکی زمان گسسته سیستم جرثقیل سقفی بهصورت رابطه (23) است.

$$\begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \\ x_{3,k+1} \\ x_{4,k+1} \end{bmatrix} = \begin{bmatrix} x_{2,k} \times at + x_{1,k} \\ \ddot{a} \times dt + x_{2,k} \\ x_{4,k} \times dt + x_{3,k} \\ \ddot{\theta} \times dt + x_{4,k} \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$
 (23)

مقادیر موقعیت و سرعت گاری و همچنین موقعیت زاویهای و سرعت \ddot{a}_{0} زاویهای حرکت بار، متغیرهای بردار حالت و مقادیر $\ddot{ heta}$ و \ddot{a}_{0} از روابط قابل حصول است. بردار حالت و بردار مشاهده گر به ترتیب در روابط (25,24) آورده شده است.

$$x_k = [d, \dot{d}, \theta, \dot{\theta}]^{\mathrm{T}} \tag{24}$$

$$y_k = [d, \theta]^{\mathrm{T}} \tag{25}$$

نویز فرآیند w_k و نویز مشاهده گر v_k ، نویزهای گوسی سفید است که ماتریسهای کوواریانس آنها به ترتیب در روابط (27,26) نشان داده شده است.

$$Q = 0.001 \times \text{diag}\{1,1,1,1\}$$
 (26)

$$R = 0.01 \times \text{diag}\{1,1,1,1\} \tag{27}$$

رابطه (23) نمایش فرم گسسته فضای حالت سیستم است. در واقع سیستم در بازه صفر تا au_f ثانیه بهصورت پیوسته اجرا می شود که این فاصله به بازههایی با طول dt = 0.02 تقسیم شده و به شکل گسسته حل می شود. کمیت au_f انتهای بازه زمانی کارکرد سیستم است. حرکت جرثقیل در دو حالت طول کابل ثابت و طول کابل متغیر با زمان بررسی می شود. در صورتی که جرثقیل مورد مطالعه فقط حرکت صفحهای داشته باشد و طول کابل در حرکت ثابت باشد، سیستم مورد نظر یک سیستم مستقل از زمان می شود؛ بنابراین مشتق اول طول کابل و مشتق دوم آن نیز برابر با صفر می شود.

در حالتی که طول کابل حامل بار متغیر باشد، نسبت طول کابل در هر نقطه به کمینه طول کابل با علامت λ درنظر گرفته می شود. در این مقاله $\lambda(t)$ حالت بالاl پایین بردن بار تحلیل شده است. در این حالت فرمول

¹ Cross-covariance

بهصورت رابطه (28) مىشود [8].

$$\lambda(\tau) = \begin{cases} a_{10} + a_{11} + a_{12}\tau^2 + a_{13}\tau^3 & 0 < \tau < p\tau_f \\ a_{20} + a_{21} + a_{22}\tau^2 + a_{23}\tau^3 & p\tau_f < \tau < \tau_f \end{cases}$$
(28)

در آن روابط قيود بهصورت رابطه (29) به كار رفته است.

$$\lambda_{\min} = \lambda(p\tau_f) = 1 \cdot \hat{\lambda}(0) = 0 = a_{20}$$
 $\lambda(0) = \lambda_0 = a_{10} \cdot \lambda(p\tau_f^+) = \lambda(p\tau_f^-) \cdot \lambda(\tau_f) = \lambda_f$
(29)
در رابطه بالا نیز ضریب p محل آغاز حرکت به سمت بالا و پایین کابل را
 λ_{\min} میکند. λ_{\min} طول نخستین کابل، λ_f طول نهایی کابل و λ_f کمینه طول کابل است.

در این حالت سیستم تحت ورودی کنترلی بنگ- بنگ قرار گرفته که مدل آن به صورت تابع در شکل 2 آورده شده است.

زمانهای سوئیچینگ au_c ، au_b و au_c ، au_b ، au_c ، و ماتریسی درنظر گرفته شده که همان ماتریس متغیر طراحی بهینهسازی در الگوریتم ژنتیک است.

تابع ارزش مسئله بهینهسازی بهصورت روابط (31,30) تعریف شده است.

Cost Function = Penalty +
$$w \times (\tau_f)$$
 (30) در آن penalty به مورت رابطه (31) درنظر گرفته شده است.

Penalty =
$$abs(y - y_d)$$

+ $abs(\dot{y} - 0) + abs(\theta - 0) + abs(\dot{\theta} - 0)$ (31)

ضریب وزنی برای تنظیم تابع ارزش، y_d نیز مسافت مطلوب طیشده توسط گاری که در این مسئله برابر 14.7 متر است. سه جمله آخر سمت راست رابطه (31) نشان می دهند که مقادیر مطلوب سرعت گاری، موقعیت زاویه ای آن، در هنگام رسیدن گاری به انتهای مسیر، برابر صفر است؛ بنابراین جمله نخست در رابطه (30) تضمین خواهد کرد که گاری و پاندول در مکانیزم جرثقیل سقفی با کمترین خطای ممکن به نقطه مطلوب برسند و همچنین جمله دوم برای دستیابی به این هدف در کمترین زمان ممکن در نظر گرفته شده است.

5- نتايج

در این بخش به تحلیل سیستم جرثقیل در دو حالت طول کابل ثابت و طول کابل متغیر پرداخته شده است. در هر دو حالت سیستم دارای مقادیر نامعینی یا نویز است که به کمک الگوریتم فیلتر کالمن پالایش شده است. علاوهبر آن، هدف تعیین بهینه زمانهای سویئچینگ کنترلر بنگ- بنگ جهت دستیابی

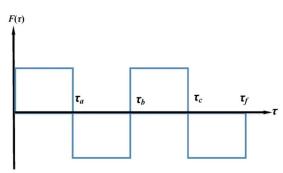
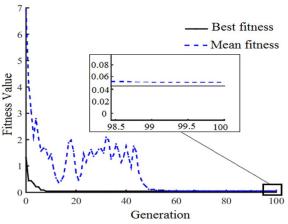


Fig. 2 Schematic of Bang-Bang controller input شکل 2 شماتیک ورودی کنترل بنگ- بنگ


به عملکرد مطلوب سیستم است. عملکرد نیروی کنترلی تحت شرایط بهینه درنظر گرفته شده، پایداری سیستم را با کمترین خطا به نقطه هدف می رساند و این امر را در کمترین زمان به انجام خواهد رساند.

1-5 بهینه سازی با درنظر گرفتن نویز در حالت طول کابل ثابت

از روابط (2,1) برای مدل سازی سیستم جرثقیل سقفی استفاده می شود. برای $\ddot{l}(t)$ و $\dot{l}(t)$ مقادیر کابل ثابت با توجه به ثابت بودن طول کابل مقادیر برابر صفر خواهند شد. کمیتهای جرم گاری، جرم بار و شتاب گرانش به ترتیب برابر $m{=}0.2{
m kg}$ و $g{=}9.8{
m m.~s^{-2}}$ درنظر گرفته شده است. در این شرایط روابط غیرخطی (2,1) به عنوان روابط سیستم، آغشته به نوبزهای فرآیند و اندازه گیری شده و برای دستیابی به جواب سیستم در الگوریتم GA-ASKF قرار می گیرند. بحث کمینه سازی تابع ارزش رابطه (30) تحت الگوريتم NSGA I در نرمافزار متلب پيادهسازي شده است. بهترین پاسخ مربوط به شیوه کارکرد نیروی کنترلی را فرآیند بهینهسازی در اختیار قرار میدهد؛ بنابراین همانطور که در بخش 4 اشاره شد متغیر طراحی الگوریتم بهینهسازی ماتریسی است که درایههای آن شامل زمانهای سویئچینگ کنترلر است. مشخصههای بهینهسازی ژنتیک شامل جمعیت 50 نفر، ضریب جهش انطباقی ، تقاطع 2 1.2 و 300 نسل بوده است. در شکل 3 نمودار تغییرات میانگین و بهترین تابع ارزش بهینهسازی در طول نسل نشان داده شده است. براساس شکل 3 به دلیل نشست تقریبی نمودار تابع ارزش بعد از 60 نسل، در نمایش دادن مقادیر تابع ارزش، به بازه 100 نسل ابتدایی اکتفا شده است. زمانهای بهینه سوئیچنگ کنترلر برای این حالت در جدول 1 آورده شده است.

V لازم به یاد است که مقادیر مشخص شده در جدول V همان درایههای ماتریس متغیر طراحی الگوریتم بهینه سازی است؛ بنابراین در صورت سویئچ شدن نیروی کنترلی در این زمان ها سیستم جرثقیل سقفی با کمترین خطا و سریع ترین زمان به نقطه هدف در انتهای مسیر خواهد رسید.

در شکل 4 نمودار تغییرات نیروی کنترلی بنگ - بنگ در طول زمان نشان داده شده است. به درستی مشاهده می شود که مقدار نیروی کنترلی در زمان آورده شده در جدول 1 تغییر می کند. سیستم جر ثقیل سقفی به صورت

Fig. 3 Variation of cost function during the generation for fixed length system

شکل 3 نمودار تغییرات تابع ارزش در طول نسل برای سیستم طول کابل ثابت

¹ Adaptive Feasible

² Cross Over

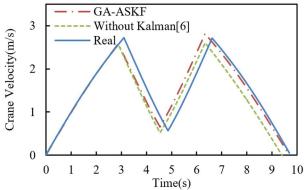


Fig. 6 Variation of crane velocity with fixed length for the presence and absence of the Kalman filter and noiseless condition

شکل 6 تغییرات سرعت گاری با طول کابل ثابت در حضور و حضور نداشتن فیلتر کالمن و شرایط بدون نویز

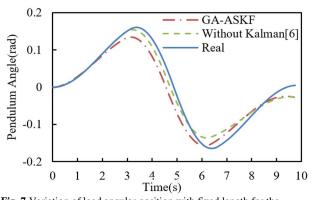


Fig. 7 Variation of load angular position with fixed length for the presence and absence of the Kalman filter and noiseless condition شکل 7 تغییرات موقعیت زاویهای بار با طول کابل ثابت در حضور و حضور نداشتن فیلتر کالمن و شرایط بدون نویز

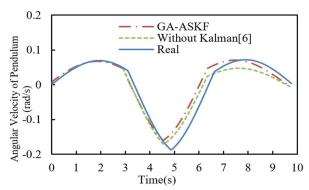


Fig. 8 Variation of load angular velocity with fixed length for the presence and absence of the Kalman filter and noiseless condition محل 8 تغییرات سرعت زاویه ای بار با طول کابل ثابت در حضور و نداشتن حضور کالمن فیلتر و شرایط بدون نویز

سوئیچینگ برای عملکرد بهینه کنترلر، حاصله از الگوریتم ژنتیک است. اختلاف رفتار سیستم مخدوش نسبت به سیستم بدون اغتشاش برای دو حالت حضور فیلتر کالمن و غیاب آن در شکل 11 نشان داده شده است.

در شرایطی که اعداد استفاده شده در نمودار شکل 11 مقدار میانگین خطاهای بی بعدشده چهار متغیر سیستم در طول زمان شبیهسازی به روشنی نشان داده شده است که با استفاده از روش پیشنهادی برای تخمین پارامترهای سیستم می توان خطای سیستم مخدوش نسبت به حالت مطلوب

جدول 1 زمانهای سوئیچینگ بهینه برای جرثقیل سقفی با طول ثابت **Table 1** Optimal switching time for overhead crane with fixed length

α =0.2	زمانهای سویئچینگ
2.883	$ au_a$
4.559	$ au_b$
6.395	$ au_c$
9.7	$ au_f$

جداگانه، در نبود اغتشاش اجرا شده و رفتار متغیرهای آن تحت نیروی کنترلی بنگ- بنگ بهدست آمده است. تغییرات متغیرهای سیستم جرثقیل سقفی در طول زمان، برای دو حالت حضور و حضور نداشتن فیلتر کالمن با رفتار سیستم مطلوب در شکلهای 5-10 مقایسه شده است. در این شکلها نزدیکبودن رفتار سیستم مخدوشی که در آن از فیلتر GA-ASKF استفاده شده به عملکرد سیستم مطبوب به روشنی نمایان است؛ بنابراین نتایج بهدستآمده بیانگر ضرورت استفاده از فیلتر کالمن برای سیستمهای مخدوش جهت تخمین متغیرهای حالت و دستیایی به عملکرد مطلوب است.

نمودارهای تغییرات متغیرهای حالت سیستم جرثقیل سقفی نشان میدهد که درصورت وجود اغتشاش در سیستم، فیلتر کالمن GA-ASKF به درستی و با دقت بالاتر نسبت به حالت بدون فیلتر قادر است که متغیرهای حالت سیستم را تخمین بزند. البته این نمودارها به جای استفاده از زمانهای

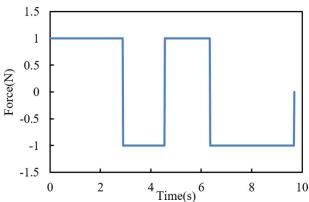


Fig. 4 Bang-Bang controller force obtained from ptimization of overhead crane with fixed lenght

شکل 4 نیروی کنترلی بنگ- بنگ حاصل از بهینهسازی جرثقیل سقفی با طول کابل ثابت

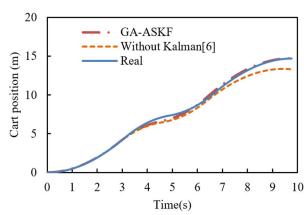


Fig. 5 Variation of crane position with fixed length for the presence and absence of the Kalman filter and noiseless condition

شکل 5 تغییرات موقعیت گاری با طول کابل ثابت در حضور و حضور نداشتن فیلتر کالمن و شرایط بدون نویز هیچگاه از عدد یک تجاوز نکرده است که این امر بیانگر عملکرد مطلوب روش پیشنهادی در پالایش دادههای مخدوش سیستم است. بهعنوان اثبات دیگری بر عملکرد مطلوب فیلتر کالمن، میانگین خطاهای بی بعدشده رفتار متغیرهای حالت سیستم برای دو حالت حضور و حضور نداشتن فیلتر کالمن در جدول 2 مقایسه شده است که نشان می دهد میزان خطا برای حالتی که از فیلتر کالمن GA-ASKF استفاده می شود مقدار کمتری است؛ بنابراین فیلتر کالمن توانسته است اثرات نامطلوب ناشی از وجود اغتشاش در سیستم را تا حدودی برطرف نماید.

2-5- بهینهسازی با درنظر گرفتن نویز در حالت طول کابل متغیر

برای حالت طول متغیر کابل در جر ثقیل حرکت رو به بالاI پایین بررسی شده است. تحلیلها در این بخش به دو قسمت دستهبندی شده که عبارت است از بررسی لزوم استفاده از فیلتر کالمن و تحلیل نسبت جرمیهای متفاوت. برای هر کدام از حالتهای در نظر گرفته شده در این بخش نیز، بهترین رفتار نیروی کنترلی تعیین شده است. این امر با بهینه سازی زمانهای سوئیچینگ کنترلر بنگ - بنگ میسر می شود. در واقع عملکرد کنترلر به گونه ای تنظیم می شود که منجربه کمینه سازی تابع ارزش رابطه (30) می شود. نتیجه تکنیک به کار برده شده، عملکرد پایدار و دقیق سیستم مخدوش جر ثقیل سقفی است.

5-2-1- بررسى لزوم استفاده از فيلتر كالمن

در این بخش سیستم جرثقیل در حالت حرکت به با|v| پایین مدل شده است. بررسی کنونی در حالتی که جرم گاری 1 کیلوگرم و جرم بار 0.4 کیلوگرم، انجام گرفته است. (به عبارت دیگر ضریب α برابر 0.4 است.) تابع ارزش رابطه انجام گرفته است. (به عبارت دیگر ضریب α برابر 0.4 است.) تابع ارزش رابطه (30) برای دستیابی به بهترین عملکرد نیروی کنترلی به کمک الگوریتم ژنتیک کمینه شده است. فرآیند بهینهسازی با مشخصههایی شامل جمعیت 0.4 فقر، ضریب جهش انطباقی، تقاطع 0.4 و 0.4 نسل انجام شده است. مقادیر مربوط به زمانهای سویئچینگ نیروی کنترلی که به ازای آن تابع ارزش کمینه شده و در واقع نتیجه فرآیند بهینهسازی، در جدول 0.4 آورده شده است. نتیجه کار کرد کنترلر براساس این مقادیر، داشتن کمترین خطا از نقطه هدف و سریع ترین پاسخ است. تغییرات متغیرهای حالت سیستم آغشته به نویز جرثقیل سقفی در دو حالت حضور فیلتر کالمن و بدون استفاده از آن بررسی شده و به همراه رفتار این متغیرها برای سیستم بدون اغتشاش، در اشکال 0.4 است. 0.4 نشان داده شدهاند. در اینجا نیز فیلتر کالمن استفاده شده (GA-ASKF

جدول 2 مقایسه میانگین خطا برای طول کابل ثابت در حضور و نداشتن حضور فیلتر کالم:

 $\begin{tabular}{ll} \textbf{Table 2} comparison of mean error for fixed length in the presence or absence of the Kalman filter \end{tabular}$

میانگین خطای بعدشده	$\alpha = 0.2$
0.3292	با حضور فيلتر GA-ASKF
0.6852	بدون حضور فيلتر كالمن

جدول $\bf 8$ زمانهای سوئیچینگ بهینه برای جرثقیل سقفی با طول متغیر $\bf Table~3$ Optimal switching time for overhead crane with variable length

α = 0.4	زمانهای سویئچینگ
3.244	$ au_a$
4.798	$ au_b$
6.214	$ au_c$
10	$ au_f$

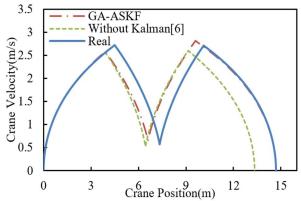


Fig. 9 Variation of crane velocity relative to crane position with fixed length for the presence and absence of the Kalman filter and noiseless condition

شکل 9 تغییرات سرعت گاری نسبت به موقعیت آن با طول کابل ثابت در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

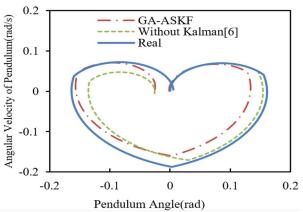


Fig. 10 Variation of load angular velocity relative to load angular position with fixed length for the presence and absence of the Kalman filter and noiseless condition

شکل 10 تغییرات سرعت زاویهای بار نسبت به موقعیت زاویهای آن با طول کابل ثابت در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

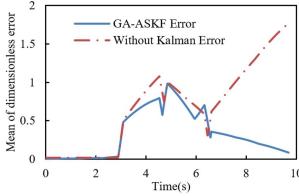


Fig. 11 Variation of the mean of dimensionless error of noisy system than ideal system for the presence and absence of the Kalman filter شكل 11 تغييرات ميانگين خطاى بى بعدشده سيستم مخدوش نسبت به سيستم به ايده آل در دو حالت حضور و نداشتن حضور فيلتر كالمن

آن را به کمینه رساند.

در نمودار شکل 11 نشان داده شده که مقدار اختلاف بیبعدشده رفتار سیستم مخدوش نسبت به سیستم ایدهآل در طول مدت زمان اجرای آن

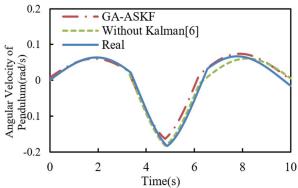


Fig. 15 Variation of load angular velocity with variable length for the presence and absence of the Kalman filter and noiseless condition مخل 15 تغییرات سرعت زاویه ای بار با طول کابل متغیر در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

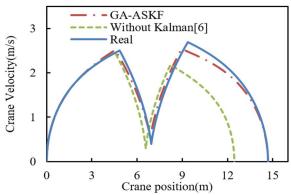


Fig. 16 Variation of crane velocity relative to crane position with variable length for the presence and absence of the Kalman filter and noiseless condition

شکل 16 تغییرات سرعت گاری نسبت به موقعیت آن با طول کابل متغیر در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

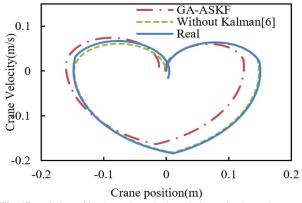


Fig. 17 Variation of load angular velocity relative to load angular position with variable length for the presence and absence of the Kalman filter and noiseless condition

شکل 17 تغییرات سرعت زاویهای بار نسبت به موقعیت زاویهای آن با طول کابل متغیر در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

شاخصههای سیستم به خوبی و با کمترین نامیزانی نسبت به سیستم ایدهآل، مسیر مطلوب را طی می کنند. در حالی که این عملکرد مناسب در شرایطی که از فیلتر کالمن استفاده نشده است، دیده نمی شود. به عنوان اثبات دیگری بر

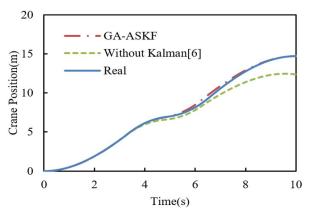


Fig. 12 Variation of crane position with variable length for the presence and absence of the Kalman filter and noiseless condition شكل 12 تغييرات موقعيت گارى با طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

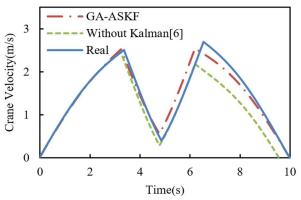


Fig. 13 Variation of crane velosity with variable length for the presence and absence of the Kalman filter and noiseless condition شكل 13 تغييرات سرعت گارى با طول كابل متغير در حضور و نداشتن حضور فيلتر كالمن و شرايط بدون نويز

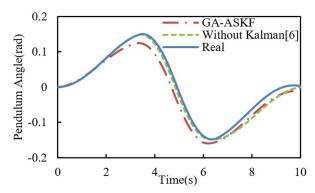


Fig. 14 Variation of load angular position with variable length for the presence and absence of the Kalman filter and noiseless condition

شکل 14 تغییرات موقعیت زاویهای بار با طول کابل متغیر در حضور و نداشتن حضور فیلتر کالمن و شرایط بدون نویز

با بررسی نمودارهای نشان داده شده به خوبی می توان تأثیر عملکرد روش GA-ASKF را در تخمین متغیرهای سیستم مخدوش جرثقیل سقفی، مشاهده کرد. با پیاده سازی الگوریتم GA-ASKF علی رغم اغتشاش وارده،

این نتیجه گیری، نمودار رفتار میانگین خطای بیبعدشده سیستم مخدوش نسبت به سیستم ایده آل، برای دو حالت حضور و نداشتن حضور فیلتر کالمن، در شکل 18 آورده شده است.

در اینجا نیز مقادیر اختلاف، در واقع میانگین خطاهای بی بعدشده متغیرهای سیستم، شامل موقعیت و سرعت گاری، موقعیت زاویهای و سرعت زاویهای بار است. نمودار شکل 18 نشان می دهد که در طول زمان شبیه سازی، خطای رفتار سیستم نسبت به شرایط ایده آل آن، برای حالتی که از فیلتر کالمن استفاده شده است، کمتر از حالت بدون فیلتر است، همچنین مقادیر مربوط به اختلاف بی بعدشده رفتار سیستم در شرایطی که از روش پیشنهادی استفاده شده است، تا حدود زیادی قابل قبول است، همچنین کمیت میانگین مقادیر خطا بی بعدشده در طول زمان برای دو حالت حضور و کمیت میانگین مقادیر خطا بی بعدشده در حدول 4 مقایسه شده است که نشان می دهد میزان خطا برای حالتی که از فیلتر کالمن و GA-ASKF استفاده می شود، مقدار کمتری است.

5-2-2- بررسى نسبت جرمىهاى متفاوت

در این بخش حرکت به بالاI پایین جرثقیل سقفی، برای نسبت جرمیهای مختلف (وزن بارهای مختلف) مورد تحلیل قرار گرفته و به بهینهسازی زمانهای سوئیچینگ نیروی کنترلی پرداخته شده است. در این حالت نیز مشخصههای الگوریتم ژنتیک شامل جمعیت 50 نفر، ضریب جهش انطباقی، تقاطع 1.2 و 300 نسل است. برای هر یک از نسبتهای جرمی بهصورت جداگانه بهینهسازی انجام شده و نتایج حاصل از این بررسی در جدول 5 ارائه شده است. در این جدول زمانهای سویئچینگ انتخابی توسط الگوریتم ژنتیک به نمایش درآمده است. بهازای استفاده از این مقادیر، بهترین رفتار نیروی کنترلی و در نتیجه عملکرد بهینه سیستم حاصل خواهد شد.

با مقایسه زمانهای سویئچینگ کنترلر به روشنی مشاهده می شود که تحت بارهایی با وزن کمتر، جر ثقیل در مدت زمان کوتاه تری به مکان مطلوب خود در انتهای مسیر می رسد. مقادیر متغیرهای حالت سیستم در لحظه قرار گرفتن بار در انتهای مسیر در جدول 5 آورده شده است. با بررسی این مقادیر مشاهده می شود که در تمامی شرایط وزنی بار، کنترلر بنگ بنگ طراحی شده با روش انتخابی الگوریتم ژنتیک توانسته است سیستم جر ثقیل سقفی را با دقت قابل قبولی به نقطه مطلوب انتهای مسیر برساند. ستون آخر جدول 5 شامل مقادیر مربوط به تابع ارزش فرآیند بهینه سازی برای هر یک از نسبتهای جرمی است.

برای مقایسه بهتر شرایط کاری جرثقیل سقفی تحت بارهای مختلف، یک جمعیت 500تایی نویز با توزیع گوسی ساخته شده است. سیستم به کمک نیروی کنترلی بنگ- بنگ با همان زمانهای سویئچینگ بهدستآمده از فرآیند بهینهسازی هر بار تحت تأثیر یکی از نویزها اجرا و اطلاعات مربوط

به آن ذخیره شده است. خطای مربوط به متغیرهای حالت سیستم، هنگام قرار گرفتن بار در انتهای مسیر، برای تمامی این 500 حالت اندازه گیری، میانگین و واریانس آنها مورد محاسبه قرار گرفته است. مقادیر مربوط به این محاسبات در جدول 6 قابل مشاهده است. از مقایسه دادههای موجود در جدول 6 به خوبی مشخص است که هرچقدر وزن محموله کمتر باشد، میانگین و واریانس خطاها دارای مقادیر کوچکتری هستند. با توجه به اطلاعات به دست آمده می توان به این نکته اشاره کرد که سیستم جرثقیل سقفی در هنگام کار با بارهای سبک تر دارای عملکرد به مراتب مطلوب تری

6- نتيجه گيري

سیستم جرثقیل سقفی نیاز به طراحی کنترلری دارد که بتواند محموله را با کمترین نوسان، بیشترین دقت و سریعترین زمان به نقطه هدف برساند. به همین منظور نیروی کنترلی بنگ- بنگ درنظر گرفته شده است که در آن، زمانهای سوئیچینگ نیروی کنترلی مشخصهای اساسی و تعیین کننده است. درنظر گرفتن این زمانها بهعنوان متغیر طراحی در الگوریتم بهینهسازی، رفتار مطلوب سیستم دینامیکی را درپی داشته است. تابع ارزش تعیینشده جهت کمینهسازی، اهداف طراحی را دنبال میکند. در شرایطی که بهینهسازی برای سیستم آغشته به نویز انجام شده است، برای پالایش دادههای مخدوش از GA-ASKF بهره گرفته و تأثیر مطلوب این فیلتر در پالایش دادههای مخدوش به خوبی در نتایج و نمودارها دیده شده، همچنین به مقایسه رفتار سیستم تحت بارهای مختلف پرداخته شده است. بهترین انتخاب کنترلر بهدستآمده برای هر یک از این حاتها نشان میدهد که شرایط وزنی محمولهها بر عملکرد کنترلر تأثیرگذار خواهد بود. نتایج بررسی نشان میدهد که جرثقیل سقفی، برای بارهایی با نسبت جرمی پایینتر عملکرد بهتری خواهد داشت و میتوان برای دستیابی به عملکرد مطلوب جرثقیل سقفی، بازه محدودکنندهای برای وزن بارهایی که قرار است حمل شوند، درنظر گرفت. از نتایج بهدستآمده در تحلیل بارهایی با جرمهای مختلف، تأثیر انتخاب بهینه زمانهای سویئچینگ نیروی کنترلی در كمينهشدن زمان نهايي كاركرد جرثقيل سقفي ديده شده است.

جدول 4 مقایسه میانگین خطا بی بعد شده برای طول کابل متغیر در حضور و نداشتن حضور فیلتر کالمن

حضور فيلتر كالمن **Table 4** Comparison of mean of dimensionless error for variable length in the presence and absence of the Kalman filter

میانگین خطای بیبعدشده	$\alpha = 0.4$
0.2036	با حضور فيلتر GA-ASKF
0.8678	بدون حضور فيلتر كالمن

جدول 5 مقایسه مشخصه های سیستم در نسبت جرمی های متفاوت

Table 5 Comparison of the fitueare of the system in different mass ratios

α	$\tau_a(s)$	$\tau_b(\mathbf{s})$	$\tau_c(s)$	$\tau_f(\mathbf{s})$	y(m)	\dot{y} (m/s)	θ (rad)	$\dot{\theta}(\text{rad/s})$	تابع ارزش
 0	2.715	4.609	6.05	9.38	14.67	-0.004	-0.061	0.021	0.1262
0.2	3.066	4.684	6.214	9.68	14.71	-0.006	-0.05	0.0371	0.1161
0.4	3.244	4.798	6.218	10	14.69	-0.008	-0.012	0.0015	0.042
0.6	3.388	4.967	6.389	10	14.7	-0.026	-0.002	-0.048	0.087
0.8	3.478	5.064	6.46	10.15	14.77	-0.006	-0.063	-0.0104	0.258
 1.0	3.84	5.14	6.787	10.3	14.707	-0.0149	-0.054	-0.059	0.146

- underactuated overhead cranes, *IET Control Theory Application*, Vol. 9, No. 12, pp. 1893–1900, 2015.
- [4] M. S. Moon, Rule Based Approaches for Controlling Oscillation Mode Dynamic System, PhD Thesis, Department of Electronical Engineering, Virginia Polytechnic Institute and State University, 1997.
- [5] N. Narimanzade, A. Bagheri, P. Aghaie Moghadami, Designing the Optimal Switching Time for Overhead Crane, The 11th Annual International Conference on Mechanical Engineering, Mashhad, Iran, May 13-15, 2003. (in Persian فارسى)
- [6] M. Masoumnezhad, Efficient Control of An Overhead Crane Using Genetic Algorithm Methods. M.s Thesis, Department of Mechanical Engineering, University of Guilan, Rasht, 2005. (in Persian فارسى)
- [7] A. Bagheri, N. NArimanzade, M. Masoumnezhad, Optimal Determination of the Crane Switching Time Using GA, *The 13th Annual International Conference on Mechanical Engineering*, Esfahan, May 17-19, 2005. (in Persian فأرسى)
- [8] R.V. d. Merve, Sigma-point kalman filter for probabilistic inference in dynamic state space models, Ph.D. Thesis, OGI School of Science & Engineering at Oregon Health & Science University, Portland and Hillsboro, Oregon, 2004.
- [9] R.V. d. Merwe, E. A. Wan, The Square-Root Unscented Kalman Filter for State and Parameter-Estimation. In Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 6, pp. 3461— 3464, 2001
- [10] W. Li, Y. Jia, H-infinity filtering for a class of nonlinear discrete-time systems based on unscented transform. Signal Processing, Vol. 90, pp. 3301– 3307, 2010.
- [11] J. Wang, Ch. Song, X. Yao, J. Chen, Sigma Point H-infinity Filter for Initial Alignment in Marine Strap down Inertial Navigation System, 2nd International Conference on Signal Processing Systems (ICSPS), Vol. 1, pp. 580–584, 2010.
- [12] M. Masoumnezhad, A. Moafi, N. Nariman-zadeh, Optimal Stimate of An Inverted Pendulum's State Variables Using Unscented H-infinity Filter, *The 21th Annual International Conference on Mechanical Engineering*, Tehran, May 7-9, 2013. (in Persian فارسى)
- [13] M. Partovibakhsh, G. Liu, An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots, *IEEE Transactions* on Control Systems Technology, Vol. 23, No. 1, pp. 357-363, 2015.
- [14] M. Masoumnezhad, A. Jamali, N. Nariman-zadeh, Optimal design of symmetrical/asymmetrical sigma-point Kalman filter using genetic algorithms, *Transactions of the Institute of Measurement and Control*, Vol. 37, No. 3, pp. 425-432, 2014.
- [15] M. Masoumnezhad, N. Nariman-zadeh, Optimal stimation of state variables of an overhead crane using improved kalman filter, The 22nd Annual International Conference on Mechanical Engineering, Ahvaz, April 22-24, 2014. (in Persian فارسى)
- [16] Yang C, Wang X, Li Z. An optimization approach for coupling problem of berth allocation and quay crane assignment in container terminal. *Computers & Industrial Engineering*. Vol. 63, No.1, pp. 243-253, 2012.

جدول 6 میانگین و واریانس خطای سیستم در ازای جمعیت 500 تایی نویز برای نسبتهای جرمی متفاوت

Table 6 Mean and variance of system dimensionless error as for category of 500 noises for different relative mass ratio

α	میانگین مجذور خطای بی بعد شده		
lpha نسبت جرمی	میانگین	واريانس	
0	0.293021	0.0326	
0.2	0.858719	0.2865	
0.4	1.284773	0.7816	
0.6	1.590058	1.26	
0.8	1.832774	1.6535	
1	2.243420	2.5793	

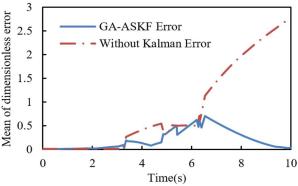


Fig. 18 Variation of the mean of dimensionless error of noisy system than ideal system for the presence and absence of the Kalman filter

7- مراجع

- Ch. Zhang, A. Hammad, Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. *Advanced Engineering Informatics*. Vol. 26, No. 2, pp. 396-410, 2012.
- Informatics, Vol. 26, No. 2, pp. 396-410, 2012.
 [2] X. Zhang, Y. Fang, N. Sun, Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints, IEEE Transaction on Industrial Electronics, Vol. 61, No. 12, pp.6915-6925, 2014.
- [3] X. Wu, X. He, Enhanced damping-based anti-swing control method for