

ماهنامه علمى پژوهشى

مهندسی مکانیک مدرس

تحلیل عددی اثرات گوشه آزاد در چندلایههای کامپوزیتی زاویهدار براساس مدل سراسری-موضعی

*2 حسين محمدىركن 1 بادى 1 ، محمدجواد محمودى

- 1- دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران
 - 2- استادیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران
 - " تهران، صندوق پستى mj_mahmoudi@sbu.ac.ir ،167651719

چکیده

اطلاعات مقاله

هدف اصلی این تحقیق، مدلسازی اثر گوشه آزاد در چندلایههای کامپوزیتی متعامد و زاویهدار گرافیت/ اپوکسی، با استفاده از روش حل المان محدود و براساس مدل سراسری-موضعی است. در این مدل، ناحیه سراسری با استفاده از تئوری مرتبه اول برشی و ناحیه موضعی، در مجاورت گوشه آزاد، با استفاده از تئوری لایروایز ردی مدل میشوند. استفاده از این روش امکان تحلیل چندلایههای ضخیم زاویهدار و متعامد را بهوجود می آورد. چندلایههای متعامد و زاویهدار به ترتیب تحت بار حرارتی و کشش یکنواخت قرار گرفته و اثرات تنشهای بین لایهای لبه آزاد و گوشه آزاد مورد بررسی قرار می گیرد. اعتبارسنجی نتایج حاضر توسط نتایج در دسترس در تحقیقات پیشین صورت می گیرد که نشاندهنده تطابق خوبی است. نتایج تحقیق کنونی نشان میدهند هنگامی که چندلایه متعامد تحت بار حرارتی قرار می گیرد توزیع تنشهای بین لایهای در هر دو جهت طول و عرض چندلایه یکنواخت است. در صورتی که برای بار کششی تکجهته تنشهای بین لایهای در دو راستای چندلایه از گوشه آزاد افزایش میداد تاییج نشان میدهند که در چندلایههای زاویهدار تحت کشش یکنواخت با افزایش زاویه الیاف، اثر گوشه آزاد افزایش می یابد و بیشترین تنشهای بین لایهای در لایههای 50 درجه در مجاورت لبههای آزاد رخ میدهند. به علاوه نتایج ثابت می کنند در لایههای زاویه الیاف کمتر از 30 درجه، اثرات لبه آزاد و گوشه آزاد تقریبا مشابه است. مطالعه پارامتری بر ضخامت و چیدمان لایههای چندلایه نشان میدهد که هر دو پارامتر بر تنشهای بین لایهای در گوشه آزاد تقریبا مشابه است. مطالعه پارامتری بر ضخامت و چیدمان لایههای چندلایه نشان میدهد که هر دو پارامتر بر تنشهای بین لایهای در گوشه آزاد تأثیر بسزایی دارند.

مقاله پژوهشی کامل دریافت: 03 خرداد 1395 پذیرش: 24 تیر 1395 ارائه در سایت: 02 شهریور 1395 کلید واژگان: اثر گوشه آزاد چندلایههای زاویهدار مدل سراسری - موضعی تنشهای بینلایهای

Numerical analysis of free corner effects in angle-ply composite laminates based on global-local method

Hossein Mohammadi Roknabadi¹, Mohammad Javad Mahmoodi^{2*}

Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran. * P.O.B. 167651719 Tehran, mj_mahmoudi@sbu.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 23 May 2016 Accepted 16 July 2016 Available Online 23 August 2016

Keywords: Free corner effect Angle-ply laminates Global-local model Interlaminar stresses

ABSTRACT

The main purpose of this paper is modeling of the free corner effect of cross-ply and angle-ply graphite/epoxy composite laminates using finite element method based on global-local method. The global area is modeled by first order shear deformation theory and the local area, in the free corner vicinity, is modeled by the Reddy's layer-wise theory. Using this method provides the possibility of analysis of thick angle-ply and cross-ply laminates. The cross-ply and angle-ply laminates are subjected to uniform thermal and extension loading, respectively and the effects of the free edge and free corner interlaminar stresses are investigated. Verification of the presented results is performed via available results in the previous studies which show good agreement. The present study results show that when the cross-ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in both length and width of the laminate. However, for the uni-axial extension loading, the interlaminar stresses possess different distribution in the two directions of the laminate. Also, results demonstrate that in angle-ply laminates under extension loading, the free corner effect increases by increasing fiber angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate layers illustrates that both parameters have a significant influence on the interlamianar stresses at the free corner

می گیرند؛ بنابراین تحلیل آنها از اهمیت خاصی برخوردار است. یکی از عوامل مهم در تحلیل چندلایههای کامپوزیتی وجود تنشهای بین لایهای در

1- مقدمه

امروزه کامپوزیتها در ساختارهای مختلفی در صنعت مورد استفاده قرار

آنهاست تحلیل مناسب اثرات تنشهای بین لایهای روی لبهها و گوشههای آزاد یک چندلایه کامپوزیتی می تواند کمک مناسبی برای انتخاب چندلایههای کامپوزیتی باشد. تنشهای بین لایهای و اهمیت بررسی آن¬ها، در حدود 40 سال پیش با کارهای پایپز و پاگانو [1] در ارتباط با لبه آزاد معرفی شد و در سالهای اخیر با گسترش به اثر گوشه آزاد ادامه یافت [5-2]. در این زمینه تحقیقات گستردهایی انجام گرفته است که هدف از این یژوهشها، ارائه راه حلها و روشهای پیشبینی و مطالعه تنشهای بین لایهای و ارائه راه کارهای جدیدتر برای کاهش خرابیهای حاصل از این اثرات است [9-6]. در حالت کلی می توان تحقیقات و روشهای حل مسائل گوشه آزاد 1 و لبه آزاد 2 را به دو دسته روشهای عددی و روشهای تحلیلی تقسیم کرد. در بخش روشهای عددی، المانهای استاندارد با کاربرد چندگانه که شامل المانهایی که براساس معادلات تغییر مکان رایج فرمول بندی میشوند، است [2]، و یا المانهای خاص با کاربرد ویژه که برای مدلسازی تنشهای تکین و با شرایط مرزی و یا شرایط خاص پیوستگی تغییر مکان، در مرز جداكننده لايهها كاربرد دارند، مورد استفاده قرار مي گيرد [2]. نوع المان مورد استفاده وابسته به شرایط تحلیل مورد نظر است که می تواند براساس تغییر مکان، تنش و یا ترکیبی از هر دو باشد. علاوهبر این موارد، تفاوتهایی از قبیل استراتژیهای مشبندی و تراکم المانبندی در روشهای عددی به چشم می خورد که بیشتر مربوط به توانایی تجهیزات محاسباتی و زمان انجام پروژه میشود [2].

گوشه آزاد در سازههای لایهای، یکی از محلهای وقوع تنشهای موضعی است. محل برخورد دو لبه آزاد را گوشه آزاد مینامند. اثـر گوشـه آزاد کمتـر مورد توجه بوده و تا کنون تحقیقات اندکی در این زمینه صورت گرفته است. دلیل این امر ماهیت سه بعدی مؤلفههای تنش و عدم امکان در نظر گرفتن فرضهایی که منجر به حل شبه دو بعدی میشود، است؛ بنابراین برخلاف اثر لبه آزاد تحقیقات انجام شده در این زمینه تنها به موارد بسیار ساده و بارگذاریهای مشخصی محدود می شود [3].

در سال 1999 و 2001، بكر [10,3] شكل سادهاى از روش نيرو- تعادل را جهت بررسی اثر گوشـه آزاد در یک چندلایـه کـامپوزیتی متعامـد، تحـت بارگذاری حرارتی به کار برد. این روش برای چندلایه به کار برده شده به خوبی نتیجه داد و تنها به محاسبات سادهای نیاز داشت. میتلستد و بکر در سال 2003 [4] و 2004 [5]، با استفاده از تئوری مرتبه بالای لایه منفرد 3 بر پایه تغییر مکان و استفاده از توابع مثلثاتی در راستای ضخامت به تحلیل گوشه آزاد در چندلایه متعامد پرداختند. در همین سال، باروسو و همکارانش [6] با استفاده از روش ماتریس انتقال ⁴، به بررسی وضعیت و مرتبه تکین تنش در مجاورت گوشههای مواد چند جنسی از جمله چندلایههای 7 کامپوزیتی پرداختند. این مواد شامل همسان گرد 5 ، غیرهمسان گرد 6 ، متعامـد و همسان گرد متعامد 8 می شوند. میتلستد و بکر در سال 2005 [7] و 2006 [8]، وضعيت تكين تنش در مجاورت لبه آزاد و گوشه آزاد را با استفاده از روش المان محدود مرزی ۷ در مواد غیرهمسان گرد و با چیدمان لایههای مختلف بررسی کردند. آن ها بیان داشتند در حالت کلی اثر گوشه آزاد

بحراني تر از اثر لبه آزاد است. ژن و وانجي [9] در سال 2009، با اصلاح تئوري سراسری- موضعی¹⁰ اثر گوشه آزاد در چندلایههای کامپوزیتی متقارن متعامد تحت بارگذاری حرارتی را مورد بررسی قرار دادند. این نتایج با نتایج حاصل از کارهای بکر و میتلستد مورد مقایسه قرار گرفت. اخیرا آنالیز خمش چندلایههای کامپوزیتی با استفاده از تئوری لایروایز، چندلایههای با خاصیت پیزوالکتریک، استوانههای تو خالی و همچنین اثرات گرادیان دما روی لبههای آزاد مورد مطالعه قرار گرفته است [11-11]، همچنین ژانگ و بینیندا مدلی برای پیشبینی خواص هرلایه از یک چندلایه کامپوزیتی و همچنین اثرات لبه آزاد ارائه کردهاند [15]. اثر ارتعاشات روی صفحات دایرهای پله دار همراه با لبه آزاد نیز بررسی شده است [16].

امروزه از روش سراسری- موضعی برای حل مسائل مختلفی مانند آنالیز کمانش پوستهها در بارگذاری حرارتی و مکانیکی [17]، آنالیز ضربه در صفحههای ساندویچی کامپوزیتی [18] و همچنین تیرهای کامپوزیتی [19] استفاده شده است. از مدل المان محدود بر مبنای روش سراسری- موضعی برای حل مسئل مختلف در چندلایههای کامپوزیتی استفاده شده است

در این مقاله هدف بررسی اثرات لبه و گوشه آزاد در چندلایهای کامپوزیت متعامد و زاویه دار که به ترتیب تحت بار حرارتی و کششی یکنواخت هستند، با استفاده از روش سراسری- موضعی است. بدین منظور در این مدل ناحیه سراسری با استفاده از تئوری مرتبه اول برشی و ناحیه موضعی در مجاورت گوشه آزاد با استفاده از تئوری لایروایز ردی مدل میشوند و اثرات تنشهای بین لایهای نرمال و برشی روی لبه و گوشه آزاد بررسی میشوند. به طور کلی عوامل گوناگونی در به وجود آمدن پدیده تـورق یا جدایی بن لایهای ¹¹ نقش دارند. مشکلات غیرقابـل اجتنـاب ماننـد عوامـل محیطی که در فرآیندهای ساخت به وجود میآیند، تنشهای سیکلی، ضربه، تنشهای بینلایهای که در اثر ناپیوستگیهای هندسی و یا جنس مواد به وجود می آیند (لبهها، گوشهها، سوراخها) و شکست در زمینه می توانند سبب جداشدن لایهها، تبدیل آنها به ورقههای باریک و در نتیجه کاهش قابل توجه سفتی مکانیکی گردند. پس از آن که جدایش در مرز لایهها آغاز شد، در بارگذاری کمتر از حد شکست رشد می کند. با رشد جدایش، بار به گونهای توزیع می شود که در نواحی دیگر نیز جدایی به وجود می آید. این جـداییها همچنان افزایش می یابند تا به یکدیگر بپیوندند و در نهایت سبب شکست کامل قطعه شوند. در حالت کلی جدایش می تواند در یکی از مدهای بازشدگی و یا کچلی، برش درون صفحهای و یا لغزش و برش برون صفحهای و یا پیچش برشی و یا ترکیبی از این مدها به وجود آید [24,23]. تنشهای برشی و نرمال بین لایهای نیز می توانده عاملی برای پدیده تورق باشند. در مرجع [23] سان و ژو معیاری براساس تنشهای برشی و نرمـال بـین لایـهای ارائـه کردهاند که با استفاده از آن می توان پدیده تورق را با استفاده از تنشهای بین لايهاى تحليل كرد.

در ادامه به بررسی تئوریهای تغییر شکل برشی مرتبه اول و لایروایـز و روابط آن و همچنین نحوه پیادهسازی مدل سراسری- موضعی پرداخته می شود، سپس به مدل سازی مسئله گوشه آزاد پرداخته شده و در انتها نتایج بیان میشوند. برای بررسی اثر گوشه آزاد باید تـنشهـای بـین لایـهای را در امتداد دو لبه آزاد رسم کرد تا بتوان محل اتصال دو لبه آزاد که همان گوشه آزاد است را تحلیل کرد.

Free corner Free edge

Single layer higher-order theory

Transfer matrix

Isotropic
Anisotropic

Orthogonal

⁸ Isotropic orthogonal 9 Boundary finite element

¹⁰ Local-global theory

2- تحليل

1-2- تئوري تغييرشكل برشي مرتبه اول صفحات چندلايه

میدان تغییر مکان مربوط به مؤلفه تئوری لایه منفرد به صورت میدان تغییر شکل برشی مرتبه اول، مطابق رابطه (1)، در نظر گرفته می شود [25].

$$u(x, y, z, t) = u_0(x, y, t) + z\phi_x(x, y, t)$$

$$v(x, y, z, t) = v_0(x, y, t) + z\phi_y(x, y, t)$$

$$w(x, y, z, t) = w_0(x, y, t)$$
(1)

در این روابط v_0 v_0 v_0 و v_0 v_0 به ترتیب تغییرمکان صفحه میانی چند لایه در راستای v_0 و v_0 و رابطه (1) میتوان روابط کرنش- تغییرمکان را بهصورت رابطه (2) نوشت:

$$\varepsilon_{x} = \frac{\partial u_{0}}{\partial x} + \frac{1}{2} \left(\frac{\partial w_{0}}{\partial x} \right)^{2} + z \frac{\partial \phi_{x}}{\partial x} (x, y, t)$$

$$\varepsilon_{y} = \frac{\partial v_{0}}{\partial y} + \frac{1}{2} \left(\frac{\partial w_{0}}{\partial y} \right)^{2} + z \frac{\partial \phi_{y}}{\partial y} (x, y, t)$$

$$\varepsilon_{z} = 0$$

$$\gamma_{xy} = \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} + \frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y} + z \left(\frac{\partial \phi_{x}}{\partial y} + \frac{\partial \phi_{y}}{\partial x} \right)$$

$$\gamma_{xz} = \frac{\partial w_{0}}{\partial x} + \phi_{x}$$

$$\gamma_{yz} = \frac{\partial w_{0}}{\partial y} + \phi_{y}$$

$$\vdots [25] \quad \exists z \in (3) \text{ align of } z \in (3)$$

$$\begin{cases}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{xy}
\end{cases}^{(k)} = \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{bmatrix}^{(k)} \begin{pmatrix}
\varepsilon_{x} - \alpha_{x} \Delta T \\
\varepsilon_{y} - \alpha_{y} \Delta T \\
\gamma_{xy} - 2\alpha_{xy} \Delta T
\end{pmatrix}$$

$$\begin{cases}
\sigma_{yz} \\
\sigma_{xz}
\end{cases}^{(k)} = \begin{bmatrix}
\bar{Q}_{44} & \bar{Q}_{45} \\
\bar{Q}_{45} & \bar{Q}_{55}
\end{bmatrix}^{(k)} \begin{pmatrix}
\gamma_{yz} \\
\gamma_{yz} \\
\gamma_{yz}
\end{pmatrix}$$

$$\begin{cases}
\gamma_{yz} \\
\gamma_{yz} \\
\gamma_{yz}
\end{cases}$$
(3)

رابطه (3) تنشهای درون صفحهای و تنشهای برون صفحهای برشی جندلایه را نشان میدهند. (3 $ar{Q}_{ij}$ (i,j= 6، 5، 4، 2، 1) ضرایب الاستیک کاهشیافته در مختصات مرجع سازه هستند. α_{xy} و α_{y} ، α_{x} ضرایب انبساط حرارتی هستند.

2-2- تئوري لايروايز

در مقایسه با تئوریهای لایه منفرد، تئوری لایروایز با معرفی تأثیرات برش عرضی و نرمال عرضی در لایههای گسسته تعریف واقعی تری از فیزیک مسئله ارائه می دهد و مدل سازی را دقیق تر می کند [26].

میدان تغییرمکان در تئوری لایروایز را میتوان بهصورت رابطه (4) تعریف کرد [25].

$$u(x, y, z, t) = \sum_{I=1}^{N} U_{I}(x, y, t) \psi^{I}(z)$$

$$v(x, y, z, t) = \sum_{I=1}^{N} V_{I}(x, y, t) \psi^{I}(z)$$

$$w(x, y, z, t) = \sum_{I=1}^{N} W_{I}(x, y, t) \psi^{I}(z)$$
(4)

ناپیوستگی میشود، که این امر امکان پیوستگی تنشهای عرضی را به وجود می آورد. در تئوری لایروایز میتوان با استفاده از تقسیم لایه به چندین زیرلایه و استفاده از توابع درونیاب خطی لاگرانژ و یا با استفاده از توابع درونیاب مرتبه بالاتر در یک لایه، دقت حل را تا حد مطلوبی افزایش داد [25-26]. تئوری لایروایز شرح داده شده در این قسمت هیچ محدودیتی برای استفاده از زیرلایهها ایجاد نمی کند و میتوان با توجه به دقت مورد نیاز، تعداد زیرلایهها را برابر، بیشتر و یا کمتر از تعداد لایههای واقعی در نظر گرفت [26-25].

روابط کرنش-تغییرمکان برای تئوری لایروایز را میتوان با استفاده از رابطه (4) بهصورت رابطه (5) بهدست آورد:

$$\varepsilon_{x} = \sum_{I=1}^{N} \frac{\partial U_{I}}{\partial x} \psi^{I}$$

$$\varepsilon \varepsilon_{y} = \sum_{j=1}^{N} \frac{\partial V_{I}}{\partial y} \psi^{I}$$

$$\varepsilon \varepsilon_{z} = \sum_{j=1}^{N} W_{I} \frac{d\psi^{I}}{dz}$$

$$\gamma_{xy} = \sum_{j=1}^{N} (\frac{\partial U_{I}}{\partial y} + \frac{\partial V_{I}}{\partial x}) \psi^{I}$$

$$\gamma_{xz}$$

$$= \sum_{j=1}^{N} U_{I} \frac{d\phi^{I}}{dz} + \sum_{j=1}^{N} \frac{\partial W_{I}}{\partial x} \psi^{I}$$

$$\gamma_{yz}$$

$$= \sum_{j=1}^{N} V_{I} \frac{d\phi^{I}}{dz} + \sum_{j=1}^{N} \frac{\partial W_{I}}{\partial y} \psi^{I}$$
(5)

3-2- مدل سراسری - موضعی

در حل مسائل مربوط به چندلایههای کامپوزیتی میتوان از ترکیب تئوریهای مختلف، با عنوان مدلهای چندگانه ایا مدلهای سراسری-موضعی استفاده کرد و مسائل را با دقت بالا و پیچیدگیهای محاسباتی کمتر حل كرد [26,25]. مدلهای سراسری- موضعی، حالت خاصی از مدلهای چندگانه است و هنگامی که زیر ناحیه خاصی از دامنه حل مورد نظر که به نسبت کوچک است، به کار می روند. در بیشتر مواقع برای مدل های سراسری-موضعی از روش گامبهگام² استفاده میشود [17-25,22]. اغلب ناحیه سراسری که بخش بزرگی از دامنه محاسباتی است، با استفاده از تئوریهای لایه منفرد تحلیل میشود و با استفاده از نتایج آن شرایط مرزی نیرویی و تغییر مکان برای زیرناحیه موضعی که شامل بخش کوچکی از ناحیه محاسباتی که به منظور خاصی مورد تحلیل قرار می گیرد، استخراج می شود. ناحیه موضعی می تواند با استفاده از مشهای بهبود یافته تئوریهای لایه منفرد و یا مشهای تئوریهای مرتبه بالاتر و لایروایز مدل شود. جهت پیادهسازی این مدلها از روشهای عددی مانند اجزای محدود استفاده می شود [25]؛ بنابراین باید میدانهای تغییر مکان، کرنش و تنش را برای المانها تعریف کرد. میدان تغییر مکان در صورت کلی مطابق رابطه (6) به شرح زیر است.

$$u_i(x,y,z) = u_i^{\rm ESL}(x,y,z) + u_i^{\rm LWT}(x,y,z)$$
 (6) اندیسهای 3 i 2 به ترتیب تغییر مکان در جهت i 2 تغییر مکان در

¹ Multiple models

² Step by step

جهت y و تغییرمکان در جهت z است. u_i^{LWT} مؤلفههای تغییر مکان مربوط به تئوری لایه منفرد هستند که از روابط (1) بهدست میآیند. با توجه به مربوط به تئوری لایروایز هستند که از روابط (4) بهدست میآیند. با توجه به سطح دقت مورد نیاز میتوان از بخشی و یا کل میدان لایروایز استفاده کرد تا مجموعهای از المانهایی را بهدست آورد که بتوانند رفتارهای پیچیده سینماتیکی را نشان دهند.

(FSDT) برای ایجاد اتصال مناسب بین المانهای تئوری مرتبه اول برشی (FSDT) و تئوری لایروایز (LWT) باید شرط مرزی مطابق رابطه (7) برقرار باشد. $U_I=U_N=0, V_I=V_N=0, W_1=0 \end{tabular} \end{tabular}$

4-2- پیادهسازی المان محدود مدل سراسری - موضعی

شکل ضعیف تئوری مرتبه اول برشی حداکثر می تواند شامل مشتقهای مرتبه اول از متغیرهای w_0 w_0 w_0 w_0 w_0 باشد؛ بنابراین می توان آنها را با استفاده از توابع درون یاب لاگرانژ، تقریب زد. در نتیجه مؤلفههای تغییر مکان به صورت رابطه (8) تبدیل می شودند [25].

$$u_{o}(x, y, t) \approx \sum_{j=1}^{m} u_{j}(t)\psi_{j}^{e}(x, y)$$

$$v_{o}(x, y, t) \approx \sum_{j=1}^{m} v_{j}(t)\psi_{j}^{e}(x, y)$$

$$w_{o}(x, y, t) \approx \sum_{k=1}^{n} w_{j}(t)\psi_{j}^{e}(x, y)$$

$$\phi_{x}(x, y, t) \approx \sum_{j=1}^{n} S_{j}^{1}(t)\psi_{j}^{e}(x, y)$$

$$\phi_{y}(x, y, t) \approx \sum_{j=1}^{n} S_{j}^{2}(t)\psi_{j}^{e}(x, y)$$
(8)

است. توابع درون یاب FSDT است. توابع درون یاب درون یاب توابع درون یاب توابع درون یاب این توابع توابی تقریب مقادیر تغییر مکان مورد استفاده قرار می گیرد. با نوشتن معادلات حرکت مربوط به چندلایه و استفاده از شکل ضعیف تئوری

$$V_{N-1}$$

Rotation U_{N-1}
 U_{N-1}

Fig. 1 Superposition of a FSDT and LWT elements displacement fields

LWT و FSDT و LWT و LWT شکل 1 بر هم نهی میدان تغییر مکان المانهای FSDT و PSDT

مرتبه اول برشی و توابع درونیاب آن میتوان مدل المان محدود تئوری مرتبه اول برشی را بهدست آورد. مدل المان محدود تئوری مرتبه اول برشی مطابق رابطه (9) به شرح زیر است [25].

$$\begin{bmatrix} [K^{11}] & [K^{12}] & [K^{13}] & [K^{14}] & [K^{15}] \\ [K^{12}] & [K^{22}] & [K^{23}] & [K^{24}] & [K^{25}] \\ [K^{13}] & [K^{23}] & [K^{33}] & [K^{34}] & [K^{35}] \\ [K^{14}] & [K^{24}] & [K^{34}] & [K^{45}] & [K^{45}] \\ [K^{15}] & [K^{25}] & [K^{35}] & [K^{45}] & [K^{55}] \end{bmatrix} \begin{pmatrix} \{u^e\} \\ \{v^e\} \\ \{w^e\} \\ \{S^1\} \\ \{S^1\} \\ \{S^2\} \end{pmatrix}$$

$$= \begin{cases} \{F^1\} - \{F^{T1}\} \\ \{F^2\} - \{F^{T2}\} \\ \{F^3\} \\ \{F^4\} - \{F^{T4}\} \\ \{F^5\} - \{F^{T5}\} \end{cases}$$
(9)

با روندی مشابه شکل ضعیف و مدل المان محدود تئوری لایروایز مطابق رابطه (10) عبارت است از [25]:

$$U_{I}(x,y,t) \approx \sum_{j=1}^{p} U_{I}^{j}(t)\psi_{j}(x,y)$$

$$V_{I}(x,y,t) \approx \sum_{j=1}^{p} V_{I}^{j}(t)\psi_{j}(x,y)$$

$$W_{I}(x,y,t) \approx \sum_{k=1}^{q} W_{I}^{k}(t)\varphi_{k}(x,y)$$

$$(10)$$

و p تعداد گرههای المان دوبعدی برای تقریبهای درون صفحه ی و p عرضی است. به همین ترتیب $W_I^{\rm l}(t)$ و $V_I^{\rm l}(t)$ به ترتیب مقدار عرضی است. به همین ترتیب $W_I^{\rm l}(t)$ در $V_I^{\rm l}(t)$ المان را نشان تغییر مکانهای $W_I^{\rm l}$ و $W_I^{\rm l}$ $W_I^{\rm l}$ و $W_I^{\rm l}$ $W_I^{\rm l}$ $W_I^{\rm l}$ و بد جمله ای های درونیاب دوبعدی $W_I^{\rm l}$ و بد $W_I^{\rm l}$ و بد جمله ای های درونیاب دوبعدی $W_I^{\rm l}$ و بد $W_I^{\rm l}$ و در نتیجه $W_I^{\rm l}$ و به میشند. در این مقاله فرض بر این است که $W_I^{\rm l}$ و در نتیجه و میشوند.

. محدود سراسری- موضعی را به شکل رابطه (12) بهدست آورد [25].

$$\begin{bmatrix} \begin{bmatrix} K^{EE} \end{bmatrix} & \begin{bmatrix} K^{EL} \end{bmatrix} \\ \begin{bmatrix} K^{LE} \end{bmatrix} & \begin{bmatrix} K^{EL} \end{bmatrix} \end{bmatrix} \begin{pmatrix} U^E \\ U^L \end{pmatrix} = \begin{bmatrix} F^E \\ F^L \end{bmatrix}$$
(12)

ماتریس $[K^{\text{LE}}]$ همان ماتریس سختی رابطـه (8)، $[K^{\text{LE}}]$ ماتریس سختی رابطه (13) و ماتریسهای $[K^{\text{LE}}]$ و $[K^{\text{LE}}]$ طبق رابطه (13)عبارتنـد از [25]:

$$[K^{\text{EL}}] = \begin{bmatrix} K_{u_0U_I} & K_{u_0V_I} & K_{u_0W_I} \\ K_{v_0U_I} & K_{v_0V_I} & K_{v_0W_I} \\ K_{w_0U_I} & K_{w_0V_I} & K_{w_0W_I} \\ K_{\phi_xU_I} & K_{\phi_xV_I} & K_{\phi_xW_I} \\ K_{\phi_yU_I} & K_{\phi_yV_I} & K_{\phi_yW_I} \end{bmatrix},$$

$$[K^{\text{LE}}] = [K^{EL}]^{\text{T}}$$

$$(13)$$

ضرايب ماتريس سختى نيز مطابق رابطه (14) تعريف مىشوند [25]:

$$H_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} z \Phi^I dz \, , \, I_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} z \frac{d\Phi^I}{dZ} dz \tag{15}$$

3- مدل سازي مسئله گوشه آزاد

در این بخش، مسئله گوشه آزاد با استفاده از مدل سراسری- موضعی معرفی شده در بخش 2، مدلسازی می شود و به شرح هندسه مسئله، ناحیه سراسری و موضعی، نحوه مش بندی و اصلاح مش ها پرداخته خواهد شد. همان طور که در شکل 2 نشان داده شده چندلایه مورد نظر در این تحقیق، یک چندلایه مربع شکل با طول ضلع 4 سانتی متر است. ضخامت هر لایه از چندلایه mm 0.3 است. در این مقاله دامنه حل در صفحه xy با استفاده از مش بندی شکل 3 در ناحیه گوشه آزاد مدل شده است. در تئوری لایروایز، می توان در راستای ضخامت، لایه ها را به قسمتهای مختلفی تقسیم کرد. هر کدام از این قسمتها یک زیرلایه آنامیده می شوند. تعداد این زیرلایه ها می تواند بیشتر، برابر و یا حتی در حالتی که دو لایه مجاور از یک جنس با شند (که می توان برای هر دوی آن ها یک لایه در نظر گرفت)، کمتر از تعداد لایههای مادی باشند (که می توان برای هر دوی آن ها یک لایه در نظر گرفت)، کمتر از تعداد لایههای مادی باشند (26,25,10).

از آنجایی که اثر گوشه آزاد و لبه آزاد به دلیل تغییر در خواص در مرز جداکننده لایهها به وجود میآیند، هر کدام از این زیرلایهها با نزدیک شدن به مرزها کوچکتر میشوند در شکل 4 نمونهای از اصلاح تقسیمبندی زیر لایهها مشهود است. همانطور که در بخشهای پیشین اشاره شد ناحیه سراسری بخش اعظم دامنه حل از جمله نواحی داخلی چندلایه را تشکیل می دهد و با استفاده از تئوری مرتبه اول برشی مدلسازی می شود. ناحیه موضعی ناحیه مجاور گوشه آزاد است که در این ناحیه تئوری لایروایز، حاکم است. شکل 4 چیدمان اصلاح شده زیرلایهها در راستای ضخامت را نشان

ناحیهای که افزایش ناگهانی تنشهای بینلایهای در آن رخ میدهد، در حدود ضخامت لایههاست و ناحیه لایه مرزی نامیده میشود. برای افزایش دقت حل ناحیه بزرگ تری نسبت به ناحیه لایه مرزی با استفاده از المانهای لایروایز المانبندی شده است. در مجموع چندلایه مورد نظر به 400 المان تقسیم شده است که تعداد 140 المان از نوع مرتبه اول برشی و تعداد 260 المان از نوع لایروایز است. با توجه به مقایسهای که با نتایج دیگر انجام می گیرد ثابت می شود این تعداد مش برای حل این مسئله مناسب است.

4- بحث و نتايج

در این قسمت ابتدا جهت اعتبارسنجی مدل سراسری- موضعی ارائه شده،

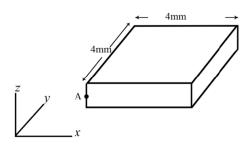


Fig. 2 Geometry of the laminate; the coordinate origin coincides with point A

شكل 2 هندسه چندلايه، انطباق مبدا مختصات بر نقطه A

$$\begin{split} H_{66} \int_{\Omega} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + H_{21} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ H_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + E_{45} \int_{\Omega^e} \psi_i \psi_j \, dx \, dy + \\ H_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + H_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \\ H_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + H_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \\ H_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + H_{24} \int_{\Omega^e} \psi_i \frac{\partial \psi_j}{\partial y} dx \, dy + \\ H_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + E_{44} \int_{\Omega^e} \psi_i \frac{\partial \psi_j}{\partial y} dx \, dy + \\ H_{23} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy + C_{44} \int_{\Omega^e} \psi_i \frac{\partial \psi_j}{\partial y} dx \, dy + \\ C_{45} \int_{\Omega^e} \psi_i \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{45} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{16} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{61} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{16} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{16} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \\ C_{65} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + E_{36} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{21} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{21} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + E_{43} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \\ C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + E_{43} \int_{\Omega^e} \frac{\partial \psi_i}{\partial$$

که در آن ضرایب طبق رابطه (15) عبارتند از:
$$C_{ij}=\int_{Z_k}^{Z_{k+1}}\bar{C}_{ij}\Phi^Idz, E_{ij}=\int_{Z_k}^{Z_{k+1}}\bar{C}_{ij}\frac{d\Phi^I}{\mathrm{d}Z}dz$$

¹ substrate

FSDT Theory

B.4

B.3

B.3

Fig. 3 The modified meshing of the solution domain ${\it mbd}$ ${\it S}$ مش بندی اصلاح شده دامنه حل

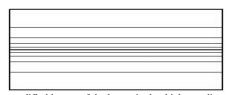
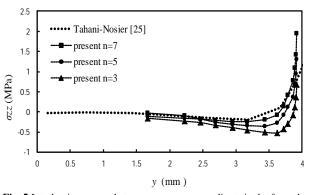


Fig. 4 The modified layout of the layers in the thickness direction شكل 4 چيدمان اصلاح شده زير لايه ها در راستاى ضخامت

نتایج حاصل از کارهای ژن و وانجی [9]، بکر [3] و بکر و میتلستد [5] بیا مدل کنونی مقایسه میشود، سپس نتایج حاصل از بارگذاری کششی بر چندلایههای زاویهدار ارائه میشود. کدنویسی المان محدود مسئله، با استفاده از بسته تجاری متلب R2012 انجام می پذیرد. در مراجع بالا اثر گوشه آزاد در چندلایه متقارن چهار لایه CFRP با آرایش ${}_{8}[90/9]$ تحت بارگذاری حرارتی ${}_{5}D^{2}=100^{\circ}C$ مورد بررسی قرار گرفته است. خواص مکانیکی هر لایه طبق رابطه (16) به شرح زیر است [94-3].

$$E_1 = 135 \text{ GPa}, E_2 = E_3 = 10 \text{ GPa}$$

 $G_{12} = G_{13} = 5 \text{ GPa}, G_{23} = 3.972 \text{ GPa}$
 $v_{12} = v_{13} = v_{23} = 0.27, \alpha_1 = -0.6 \times 10^{-6} \text{ °C}^{-1}, \alpha_2 = \alpha_3 = 40 \times 10^{-6} \text{ °C}^{-1}$ (16)


تغییر مکان چندلایه در مرز 1، درجهت محور xو در مرز 4، در جهت محور y محدود شده است و چندلایه تحت بارگذاری حرارتی قرار می گیرد. به دلیل ناپیوستگی خواص حرارتی در سطح بین لایه 0 درجه و 00 درجه، این بارگذاری سبب به وجود آمدن تنشهای بین لایهای در مجاورت گوشه آزاد و در طول لبه آزاد می شود.

در شکل 5 یک آنالیز حساسیت در مورد اثر تعداد زیرلایههای تئوری لایروایز مورد استفاده بر تنش نرمال بینلایهای در مجاورت لبه آزاد چندلایه متقارن متعامد مورد بحث انجام شده است. دیباگرام متناظر تعداد 8 و 7 نشان داده شده است، همچنین نتایج مرجع [27] که کار نثیر و طهانی است، جبت اعتبارسنجی نتایج مدل کنونی در شکل 5 آورده شده است. چنان چه از شکل 5 مشاهده می شود، تعداد زیرلایهها در راستای ضخامت مربوط به ناحیه موضعی برابر 8 تایج قابل قبولی را ائه می دهد.

با توجه به شکل 5 و همچنین مدلسازیهای مختلف مشخص می شود با استفاده از این تعداد زیرلایه، دقت قابل قبولی حاصل خواهد شد. نتایج حاصل از مدل ارائه شده و نتایج تحقیقات پیشین در شکلهای 6 تا 9 مشاهده می شود. نتایج حاصل از این مقاله برای بارگذاری حرارتی با مراجع پیشین مقایسه شده است. در مرجع [3] که اثر بکر است، روش حل با استفاده از یک

تحلیل توصیفی فرم بسته ¹ از اثرات گوشه آزاد برای یک چندلایه ساده کامیوزیتی است. در مرجع [5] از روش حل بر مبنای تئوری مرتبه بالای فرم بسته برای به دست آوردن تنشها، کرنشها و جابه جاییها در مجاورت گوشه آزاد استفاده شده است. در مرجع [9] ژن و وانجی با استفاده از مدل جابه جایم ، مرتبه بالا² که بر مبنای المان محدود است، برای آنالیز مسئله گوشه آزاد استفاده کردهاند. نتایج استنتاجشده از مدل ارائه شده در تحقیق كنوني با نتايج حاصل از نرمافزار نسترن³ [3] كه بر يايه روش المان محدود (FEM) کلاسیک مقایسه شده است. در مرجع [3] از المان آجری (ششوجهی) 20 گرهی سهبعدی Hex20 در نرمافزار نسترن جهت تحلیل المان محدود استفاده شده است. در این تحلیل هر لایه چندلایه به 7 المان آجری گسسته شده است و برخی تظریف شبکه (مش) در گوشه آزاد چندلایه انجام شده است [3]. توجه به شکلهای 6 تا 9 کاملا مشهود است که مدل سراسری- موضعی در حل مسئله گوشه آزاد از دقت خوبی برخوردار است. باید دقت شود که در مسئله بالا تنشهای برشی بین لایهای در مجاورت گوشه آزاد مقدار کمتری نسبت به تنشهای بین لایهای برشی حاصل از لبه آزاد دارند. همان طور که در شکلهای 6 تا 8 نشان داده شده تنش نرمال بین لایه ای در این ناحیه غالب است که این مسئله احتمال وقوع آسیبهایی نظیر جدایی بین لایهای ⁴ را در مجاورت گوشه آزاد بیشتر می کند.

 σ_{zz} در راستای x بین لایههای σ_{zz} در راستای x بین لایههای و x=3.993 mm درجه را نمایش می دهد. مقدار تنش نرمال بین لایهای در mm درجه را نمایش می دهد. مقدار تنش نرمال بین لایهای در $\sigma_{zz}=32.75$ MPa برار برا و با توجه به این که بارگذاری به صورت حرارتی است، نمودار تنش نرمال بین لایهای σ_{zz} برحسب بارگذاری به صورت حرارتی است. با دقت در شکلهای $\sigma_{zz}=0$ می خود که تنشهای برشی بین لایههای $\sigma_{yz}=0$ در مجاورت گوشه آزاد دارای نقطه اوج هستند. این مقدار بیشینه در $\sigma_{xz}=0$ ست، در حالی $\sigma_{yz}=0$ در این برابر $\sigma_{yz}=0$ ست، در حالی $\sigma_{yz}=0$ است، در حالی حمقدار $\sigma_{yz}=0$ است، در حالی حمقدار $\sigma_{yz}=0$ در بارگذاری حرارتی حالت تنشهای برشی بین لایه $\sigma_{yz}=0$ ست. به طور کلی در بارگذاری حرارتی حالت تنشهای برشی بین لایه $\sigma_{xz}=0$ دارای مقدار آنها متقارن است.

Fig. 5 Interlaminar normal stress σ_{zz} versus y coordinate in the free edge at the interface of 0/90.under extension loading.

شکل $\bf 5$ تنش نرمال بین لایهای $\bf \sigma_{xz}$ در مجاورت لبه آزاد در سطح میانی 0/90 در راستای محور $\bf y$

¹ closed-form

² higher-order displacement model

³ MSC/NASTRAN

⁴ delamination

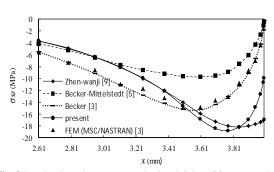


Fig. 8 Interlaminar shear stress σ_{xz} in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading محل 8 نمودار تنش برشی بین 2 بین الایه ای در مجاورت گوشه آزاد کامپوزیت متعامد در محلح 90/0 تحت بار حرارتی در راستای محور x

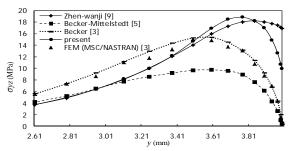


Fig. 9 Interlaminar shear stress $\sigma_{\rm xz}$ in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading منحل 9 نمودار تنش برشی بینy بین لایه ای در مجاورت گوشه آزاد کامپوزیت متعامد در سلح 90/0 تحت بار حرارتی در راستای محور y

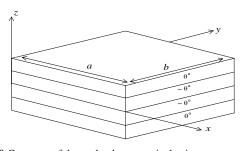


Fig. 10 Geometry of the angle-ply composite laminate شكل 10 هندسه چندلايه كامپوزيتي زاويهدار

x/a=1 و y/b=1 ور نقاط y/b=1 ور نقاط y/b=1 ور الحروب ور ا

با توجه به شکلهای 11-11 می توان این طور بیان کرد که آغاز جدایش از گوشهها در لایههایی با زاویه الیاف بزرگ تر از 30 درجه رخ می دهد. در لایههایی که زاویه الیاف آنها کمتر از 30 درجه است، اثر لبه آزاد و گوشه آزاد تقریبا مشابه است. در شکلهای 13 و 14 بیشترین تنشهای برشی برشی σ_{yz} در لایههای 30 درجه در مجاورت لبههای آزاد رخ می دهند که می تواند

در ادامه اثر جهت گیری الیاف بر پدیده گوشه آزاد در چندلایههای زاویهدار و آرایش $[\theta-\theta]_s$ تحت بارگذاری کششی مورد بررسی قرار می گیرد. این چندلایه شامل 4 لایه که به صورت متقارن مطابق شکل 10 قرار گرفتهاند و تحت کرنش کششی $[0.5]_s$ در راستای محور $[0.5]_s$ بارگذاری می شود. جنس کامپوزیت گرافیت $[0.5]_s$ بوده و خواص مکانیکی هر لایه از این چندلایه به شرح رابطه $[0.5]_s$.

$$E_1=137.9\,\mathrm{GPa},\qquad E_2=E_3=14.48\,\mathrm{GPa}$$
 $G_{12}=G_{13}=G_{23}=5.86\,\mathrm{GPa}$ $v_{12}=v_{13}=v_{23}=0.21$ (17) $v_{13}=v_$

شکلهای 11-11 نشان داده شده است. در شکل 11 و 12 مشخص است که توزیع تنش نرمال σ_{zz} در راستای x و y یکسان نیست. در مشال پیشین که مربوط به بارگذاری حرارتی بود تنش در راستای دو محور به صورت یکسان توزیع می گشت. در این جا به دلیل بارگذاری در جهت محور x توزیع تنش در شکل های 11 و 12 متفاوت شده است.

با توجه به شکلهای 11-14 مشخص می شود که با افزایش زاویه، اثر گوشه آزاد به خصوص اثر حاصل از تنش نرمال افزایش می یابد. این بدین معنی است که با افزایش زاویه الیاف امکان ایجاد جدایی بین لایهای افزایش می یابد و این آسیب در لایههای با زاویه الیاف بزرگ تر از گوشههای چندلایه

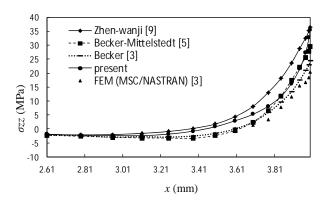
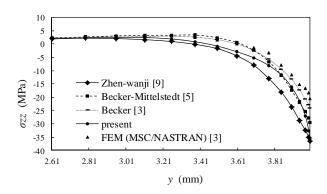
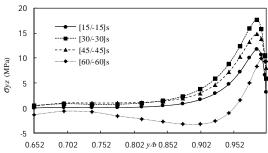
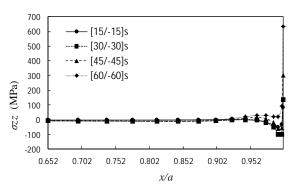




Fig. 6 Interlaminar normal stress σ_{zz} in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading.

 \mathbf{m} نمودار تنش نرمال بین لایهای در مجاورت گوشه آزاد کامپوزیت متعامد در \mathbf{x} سطح 90/0 تحت بار حرارتی در راستای محور \mathbf{x}

Fig. 7 Interlaminar normal stress σ_{zz} in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading. شکل 7 نمودار تنش نرمال بین لایه ای در مجاورت گوشه آزاد کامپوزیت متعامد در سطح 90/0 تحت بار حرارتی در راستای محور y

Fig. 14 Interlaminar shear stress σ_{yz} versus x/a non dimentional coordinate in the angle-ply laminate at the $\theta/-\theta$ interface under extension loading.


شکل 14 نمودار تنش برشی بین لایه ای در مجاورت لبه آزاد کامپوزیت زاویه دار در سطح θ -/ θ تحت بار کششی در راستای محور بدون بعد y/b

در ادامه به بررسی اثر ضخامت چندلایه بر تنشهای بینلایهای در سطح -/45 هنگامی که چند لایه $_{\rm s}$ [45/-45] تحت کشش یکنواخت در راستای محور $_{\rm s}$ قرار می گیرد، پرداخته می شود. بدین منظور چندین چندلایه با ضخامتهای $_{\rm s}$ $_{\rm s}$ می شود. بدین منظور گرفته و تحت کشش ضخامتهای $_{\rm s}$ قرار داده می شوند. خواص چند لایه نیز مطابق رابطه (17) است. نمودارها برای فهم بیشتر در راستای طول و عرض چندلایه بی بعد شده اند.

با دقت در شکلهای 18-18 مشخص می شود تمامی تنشهای بین لایهای بین لایهای با افزایش ضخامت کاهش می یابند. این کاهش تنشها در نقاط انتهایی نمودار و گوشه آزاد مشهودتر است. برای نمونه تنش نرمال بین لایهای σ_{zz} در نقطه x/a=1 برای ضخامت h=0.1mm برای ضخامت h=0.1mm تمقدار 3.73 MPa برای ضخامت h=1.5 mm تمقدار کاهش می یابد. مقدار تنش نرمال بین لایهای σ_{zz} در راستای معور y برای ضخامت مقدار تنش نرمال بین لایهای y برابر y/a=1 در نقطه یا برای ضخامت می یابد. y/a=1 در نقطه یا y/a=1 در نقطه می یابد. y/a=1 در نقطه یا y/a=1 در نقطه یا برای ضخامت این برمال بین می توان نتیجه گرفت هنگام بارگذاری کششی چندلایه کامپوزیتی زاویه دارد. با دقت افزایش ضخامت چندلایه تأثیر قابل توجهی در کاهش تنشهای نرمال بین در شکلهای 15 تا 18 می توان نتیجه گرفت هنگامی که یک چندلایه کامپوزیتی زاویه دار تحت کشش یکنواخت قرار می گیرد، تنشهای نرمال بین بین لایهای به وجود آمده مقدار بیشتری نسبت به تنشهای برشی بین لایهای دارند.

با دقت در شکلهای 15-18 و اعداد گزارششده نتیجه گیری می شود که افزایش ضخامت چندلایه سبب کاهش تمامی تنشهای بین لایهای در راستای طول و عرض چندلایه و روی لبه آزاد و گوشه آزاد می شود که این پدیده شامل کاهش تنشهای بین لایهای روی گوشههای آزاد تأثیر بیشتری دارد.

در انتها به تأثیر لایهچینی یک چندلایه کامپوزیتی زاویهدار تحت کشش یکنواخت پرداخته می شود. بدین منظور دو چندلایه کامپوزیتی متقارن منجر به لغزش لایهها و آسیب چندلایه در لبهها شود. در چندلایههایی که دارای الیاف با زاویه بیشتر از 30 هستند، کمترین تنش برشی در لبهها رخ میدهد؛ بنابراین میتوان نتیجه گرفت در لایههای با زاویه کم لغزش لایهها در لبه آزاد موجب خرابی میشود و در لایهها با زاویه بیشتر جدایی بین لایهای در گوشهها موجب آسیب چندلایه میشود.

Fig. 11 Interlaminar normal stress σ_{zz} versus x/a non dimentional coordinate in the angle-ply laminate at the $\theta/-\theta$ interface under extension loading.

شکل 11 نمودار تنش نرمال بینVیهای در مجاورت لبه آزاد کامپوزیت زاویهدار در سطح V محت بار کششی در راستای محور بدون بعد V

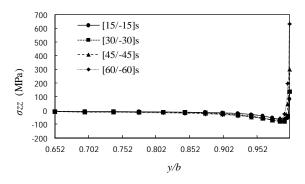
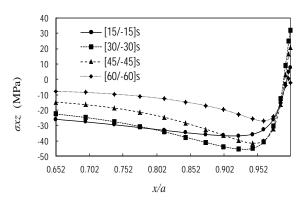
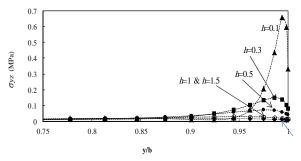




Fig. 12 Transverse normal stress σ_{zz} versus y/b non dimentional at the angle-ply laminate at $\theta/-\theta$ interface under extension loading. شكل 12 نمودار تنش نرمال بين ψ بين لايهاى در مجاورت لبه آزاد كامپوزيت با الياف زاويهدار ψ تحت بار كششى در راستاى محور بدون بعد ψ

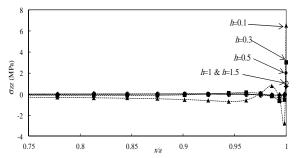
Fig.13 Interlaminar shear stress σ_{xz} versus x/a non dimentional coordinate in the angle-ply laminate at the $\theta/-\theta$ interface under extension loading.

شکل 13 نمودار تنش برشی بینVیهای در مجاورت لبه آزاد کامپوزیت زاویهدار در سطح θ - θ تحت بار کششی در راستای محور بدون بعد x/a

Fig. 18 Interlaminar shear stress σ_{yz} versus y/b non-dimentional coordinate for different laminate thickness in the angle-ply laminate at the 45/-45 interface under extension loading

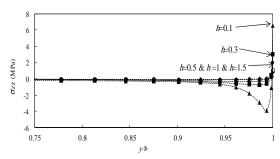
شکل 18 نمودار تنش برشی بین V_b بین لایهای در کامپوزیت زاویهدار در سطح 45-45 تحت بار کششی در راستای محور بدون بعد V_b برای ضخامتهای مختلف

ترتیب لایهچینی بهصورت قرینه نسبت به محور افقی تغییر می کنند و دارای مقدار عددی برابر هستند، ولی تنشهای نرمال بین لایهای در گوشه آزاد نسبت به تغییر چیدمان لایهها واکنش نشان می دهند.

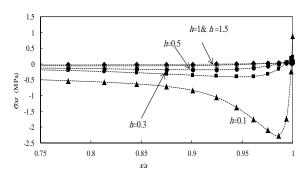

برای نمونه مقدار تنش نرمال بین لایهای σ_{zz} در نقطه σ_{zz} در نقطه σ_{zz} در نقطه σ_{zz} برایر σ_{zz} (عالی که این مقدار تنش برای چندلایه σ_{zz} (45/-45] برابر σ_{zz} (0.78 MPa برابر σ_{zz} (45/45] برابر σ_{zz} (45/45) برابر σ_{zz} (45/45) برابر σ_{zz} (45/45) برابر σ_{zz} برابر σ_{zz} (45/45) برای چندلایه σ_{zz} (45/-45) برابر σ_{zz} (45/-45) برای چندلایه σ_{zz} (45/-45) برابر σ_{zz} (45/45) برای چندلایه σ_{zz} (45/45) برای چندلایه σ_{zz} (45/45) برای پندلایه و 10 نتیجه گیری می شود که تغییر چیدمان چندلایه تغییر خاصی در تنش های نرمال بین لایهای روی لبه آزاد و روی گوشه آزاد تنش های نرمال بین لایهای دارای تغییراتی هستند.

مقدار تنش برشی σ_{xz} برای هر دو چندلایه $(45/-45]_s$ و $(45/-45]_s$ و $(45/-45]_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار تنش برشی برت لایهای $(45/-45)_s$ برابر مقدار بررسی در نقطه $(45/-45)_s$ برابر مقدار بین لایهای $(45/-45)_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار عددی $(45/-45)_s$ برابر مقدار برابر برابر برابر مقدار برابر مقدار برابر برابر مقدار برابر بر

با توجه به شکلهای 22-19 مشاهده می شود تنشهای بین لایهای در انتهای لبه آزاد چندلایه دارای یک نقطه برآمدگی یا فرورفتگی هستند که این موضوع بیانگر بالا بودن شدت تنشهای بین لایهای در این نقاط و امکان جدایی بین لایهای بیشتر در این نقاط چندلایه است. در انتهای نمودارها تغییر تنش از مقدار منفی به مثبت یا بالعکس دیده می شود.


5- جمع بندي

در این مقاله مدل سراسری- موضعی اجزاء محدود جهت بررسی اثرات گوشه آزاد در چند لایههای کامپوزیتی معرفی و بررسی شد. روابط المان محدود مدل با استفاده از ترکیب تئوریهای مرتبه اول برشی و لایروایز ردیبهدست آمد. با توجه به کاهش محاسبات و پیچیدگی این روش نسبت به مدلهای سه بعدی میتوان در مسائلی که نیاز به دقت بالای تحلیلهای سه بعدی دارند، با تقریب قابل قبولی از این روش استفاده کرد. در اینجا صحت این روش با استفاده از نتایج موجود در تحقیقات پیشین مورد تأیید قرار گرفت و سپس با استفاده از آن اثر گوشه آزاد در چندلایههای زاویهدار مورد بررسی قرار گرفت. نتایج این تحقیق نشان میدهد که در بارگذاری حرارتی توزیع تنش نرمال و برشی بینلایهای از نظر مقدار عددی در دو راستای طول و عرض چندلایه مشابه است، همچنین در بارگذاری کشش تک جهته، زاویه عرض چندلایه مشابه است، همچنین در بارگذاری کشش تک جهته، زاویه


Fig. 15 Interlaminar normal stress σ_{zz} versus x/a non-dimentional coordinate for different laminate thickness in the angle-ply laminate at the 45/-45 interface under extension loading

شکل 15 نمودار تنش نرمال بین V_{2} بین V_{3} در کامپوزیت زاویهدار در سطح 45-45 تحت بار کششی در راستای محور بدون بعد V_{3} برای ضخامتهای مختلف

Fig. 16 Interlaminar normal stress σ_{zz} versus y/b non-dimentional coordinate for different laminate thickness in the angle-ply laminate at at 45/-45 interface under extension loading

شکل 16 نمودار تنش نرمال بین\لایهای در کامپوزیت زاویهدار در سطح 45-/45 تحت بار کششی در راستای محور بدون بعد *y/b* برای ضخامتهای مختلف

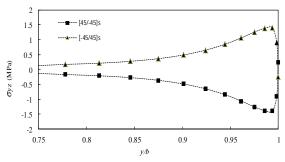
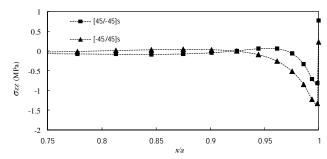


Fig. 17 Interlaminar shear stress σ_{xz} versus x/a non-dimentional coordinate for different laminate thickness in the angle-ply under extension loading laminate at the 45/-45 interface

شکل 17 نمودار تنش برشی بینلایهای در چندلایه زاویهدار در سطح 45-45 تحت بار کششی در راستای محور بدون بعد 2/x برای ضخامتهای مختلف

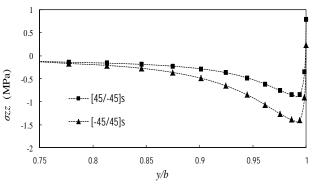
 $_{\rm s}$ [45/-45] و $_{\rm s}$ [45/-45] تحت کشش یکنواخت قرار می گیرند و تنشهای نرمال و برشی بینلایهای در راستای طول و عرض چندلایه و روی لبه و گوشه آزاد آن مورد بررسی و مقایسه قرار می گیرند. خواص چندلایه نیز مطابق رابطه (17) است.

شکلهای 19-22 تأثیر چیدمان لایههای یک چندلایه کامپوزیتی زاویه دار با زوایای 45 درجه را بر مؤلفههای نرمال و برشی تنش بینلایهای در سطح میانی لایههای 45-45 تحت بار کششی یکنواخت نشان میدهند. با دقت در این شکلها مشاهده میشود تنشهای برشی بین لایهای با تغییر در

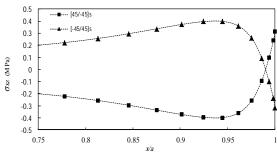

Fig. 22 Interlaminar shear stress σ_{yz} versus y/b non-dimentional coordinate for $[45/45]_s$ and and $[-45/45]_s$ laminates under extension loading at the 45/-45 interface

شكل 22 نمودار تنش برشى بين لايهاى در سطح ميانى 45-/45 براى چندلايههاى [45/-45] و _ع[45/45] تحت بار كششى در راستاى محور بدون بعد y/b

سازههای کامپوزیتی باید این اثر را نیز مورد نظر قرار داد. به علاوه نتایج روشن میسازند که در زوایای کمتر از 30 درجه، اثر لبه آزاد و گوشه آزاد تقریبا مشابه هم است. با توجه به نتایج تحقیق حاضر مشخص شد بحرانی تر بودن اثر گوشه آزاد و یا لبه آزاد میتواند تابعی از زاویه الیاف باشد. با بررسی ضخامت چندلایههای زاویهدار مشاهده شد که با افزایش ضخامت، تنشهای بین لایهای به ویژه در انتهای لبه آزاد و گوشه آزاد کاهش قابل توجهی دارند؛ بنابراین در طراحی استفاده از چندلایههای کامپوزیتی ضخیمتر مناسبتر است، همچنین نتایج ثابت میکنند تغییر در چیدمان لایههای چندلایه سبب تغییر رفتار تنشهای نرمال بین لایهای میشود. هرچند این تغییر لایهچینی تأثیری روی مقدار تنشهای برشی بین لایهای ندارد.


6- مراجع

- B. Pipes, N. J. Pagano, Interlaminar stresses in composite laminates under uniform axial extension, *Composite Materials*, Vol. 4, No. 4, pp. 528-540, 1970
- [2] Ch. Mittelstedt, W. Becker, Interlaminar stress concentration in layered structures: Part I-A selective literature survey on the free-edge effect since 1967, Composite Materials, Vol. 38, No. 12, pp. 1037-1062, 2004.
- [3] W. Becker, P. P. Jin, P. Neuser, Interlaminar stresses at the free corners of a laminate, *Composite Materials*, Vol. 45, No. 2, pp. 155-162,1999.
- [4] Ch. Mittelstedt, W. Becker, Free-corner effects in cross-ply laminates: An approximate higher-order theory solution, *Composite Materials*, Vol. 37, No. 22, pp. 2043-2068, 2003.
- [5] Ch. Mittelstedt, W. Becker, A single-layer theory approach to stress concentration phenomena in layered plates, *Composites Science and Technology*, Vol. 64, No. 10-11, pp 1737-1748, 2004.
- [6] A. Barroso, V. Mantič, F. París, Singularity analysis of anisotropic multimaterial corners, *Fracture*, Vol. 119, No. 1, pp. 1-23, 2003.
- [7] Ch. Mittelstedt, W. Becker, Asymptotic analysis of stress singularities in composite laminates by the boundary finite element method, *Composite Structures*, Vol. 71, No. 2, pp. 210-219, 2005.
- [8] Ch. Mittelstedt, W. Becker, Efficient computation of order and mode of three-dimensional stress singularities in linear elasticity by the boundary finite element method, Solids and Structures, Vol. 43, No. 10, pp. 2868-2903, 2006.
- [9] W. Zhen, Ch. Wanji, A higher-order displacement model for stress concentration problems in general lamination configurations, *Material & Design*, Vol. 30, No. 5, pp. 1458-1467, 2009.
- [10] W. Becker, P. P. Jin, J. Lindemann. The free corner effect in thermally loaded laminates, *Composite Structures*, Vol. 52, No. 1, pp. 97-102, 2001.
- [11] H. Yazdani Sarvestani, A. Naghashpour, M. Heidari-Rarani, Bending analysis of a general cross-ply laminated using 3D elasticity solution and layerwise theory, *Advanced Structural Engineering*, Vol. 7, No. 4, pp. 329-340, 2015.
- [12] J. Q. Ye, H. Y. Sheng, Free-edge effect in cross-ply laminated hollow cylinders subjected to axisymmetric transverse loads, *Mechanical Sciences*, Vol. 45, No. 8, pp. 1309-1326, 2003.
- [13] J. S. Ahn, Y. W Kim, Analysis of circular free edge effect in composite laminates by ρ-convergent global–local model, *Mechanical Sciences*, Vol. 66, No. 1, PP. 149-155, 2013.
- [14] M. Mirzababaee, M. Tahani, Accurate determination of coupling effects on free edge interlaminar stresses in piezoelectric laminated plates, *Composite Materials*, Vol. 30, No. 8, pp. 2963-2974, 2009.


Fig. 19 Interlaminar normal stress σ_{zz} versus x/a non-dimentional coordinate for $[45/-45]_s$ and $[-45/45]_s$ laminates under extension loading at the 45/-45 interface

شكل 19 نمودار تنش نرمال بين لايهاى در سطح ميانى 45-45 براى چندلايههاى [45-45] و ع[45/45] تحت بار كششى در راستاى محور بدون بعد x/a.

Fig. 20 Interlaminar normal stress σ_{zz} versus y/b non-dimentional coordinate for $[45/45]_s$ and and $[-45/45]_s$ laminates under extension loading at the 45/-45 interface

شكل 20 نمودار تنش نرمال بين لايهاى در سطح ميانى 45-45 $^{\prime}$ براى چندلايههاى y/b و $_{\rm c}$ [-45/45] تحت بار كششى در راستاى محور بدون بعد $_{\rm c}$

21 Interlaminar shear stress σ_{xz} versus x/a non-dimentional coordinate for $[45/-45]_s$ and and $[-45/45]_s$ laminates under extension loading at the 45/-45 interface.

شكل 21 نمودار تنش برشى بين \mathbb{Z} بين لايهاى در سطح ميانى 45-45 \mathbb{Z} براى چند \mathbb{Z} براى چند \mathbb{Z} عند \mathbb{Z} براى جندلايههاى \mathbb{Z} عند \mathbb{Z} عند \mathbb{Z} براى جندلايههاى در راستاى محور بدون بعد \mathbb{Z}

الیاف در مقدار تنشهای بینلایهای در مجاورت گوشه آزاد اثر بسزایی دارد. به گونهایی که در مجاورت گوشه آزاد مقدار تنش نرمال بینلایهای در زاویه 15 درجه MPa وده در حالی که این مقدار برای زاویه 60 درجه تا MPa 6.33 افزایش مییابد. اثر گوشه آزاد میتواند به اندازه لبه آزاد خطرناک باشد، چرا که همانطور که نتایج نشان میدهند بیشترین مقدار تنشهای بینلایهای در مجاورت گوشه آزاد هستند و نمودارها در مجاورت گوشه آزاد از نظر عددی دارای نقطه بیشینه هستند. در نتیجه در طراحی

- higher-order theory for the free edge effect in laminates, Composite Structures, Vol. 81, No. 4, pp. 499-510, 2007.
- [22] W. Zhen, C. H. Roggeng, Ch. Wanji, Refined laminated composite plate element based on global–local higher-order shear deformation theory, *Composite Structures*, Vol. 70, No. 2, pp. 135-152, 2005.
- [23] W. Ding, Delamination Analysis of Composite Laminates, PhD Thesis, University of Toronto, Toronto, 1999.
- [24] C. T. Sun , S. G. Zhou, Failure of quasi-isotropic composite laminates with free edges, Reinforced Plastics and Composites, Vol. 7, No. 6, pp. 515-557,
- [25] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: theory and analysis, Second Edittion, pp. 12.725-12.769, CRC Press LCC, Boca Raton, Florida, 1945.
- [26] E. J. Barbero, J. N. Reddy, Modeling of delamination in composite laminate using a laye-rwise plate theory, *Solids and Structures*, Vol. 28, No. 3, pp. 373-389, 1991.
- [27] M. Tahani, A. Nosier, Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading, Composite Structures, Vol. 60, No. 1, pp. 91-103, 2003.
- [28] A. S. D. Wang, F. W Crossman, Some new result on edge effect in symmetric composite laminates, Composite Materials, Vol. 11, No. 1, pp. 92-106, 1977.

- [15] Ch. Zhang, A. Binienda, A meso-scale finite element model for simulating free-edge effect in carbon/epoxy textile composite, Mechanics of Materials, Vol. 76, No. 1, pp. 1-19, 2014.
- [16] T. T. H. Le, C. M. Wang, T. Y. Wu, Exact vibration results for stepped circular plates with free edge, Mechanical Sciences, Vol. 47, No. 8, pp. 1224-1248, 2005.
- [17] M. Shariyat, Nonlinear thermomechanical dynamic buckling analysis of imperfec viscoelastic composite/sandwich shells by a double-superposition global-local theory and various constitutive models, Composite Structures, Vol. 93, No. 11, pp. 2833-2843, 2011.
- [18] M. Shariyat, S. H. Hosseini, Eccentric impact analysis of pre-stressed composite sandwich plates with viscoelastic cores: a novel global-local theory and a refined contact law, Composite Structures, Vol. 117, No. 1, pp. 333-345, 2014.
- [19] Ch. Wanji, S. I. Junling, A model of composite laminated beam based on the global-local theory and new modified couple-stress theory, *Composite Structures*, Vol. 113, No. 1, pp. 99-107, 2013.
- [20] S. M. R. Khalili, M. Shariyat, A finite element based global-local theory for static analysis of rectangular sandwich and laminated composite plates, Composite Structures, Vol. 107, No. 1, pp. 177-189, 2014.
 [21] S. H. Lo, W. Zhen, Y. K Cheung, Ch. Wanji, An enhanced global–local