Volume 19, Issue 3 (2019)                   Modares Mechanical Engineering 2019, 19(3): 655-663 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cheraghi N, Lezgy-Nazargah M, Etemadi E. Free Vibration Analysis of Functionally Graded Magneto-electro-elastic Plates Resting on Elastic Foundations with Considering Interfacial Imperfections. Modares Mechanical Engineering. 2019; 19 (3) :655-663
URL: http://journals.modares.ac.ir/article-15-18021-en.html
1- Civil Engineering Department, Engineering Faculty, University of Sistan and Baluchestan, Zahedan, Iran
2- Civil Engineering Department, Engineering Faculty, Hakim Sabzevari University, Sabzevar, Iran , m.lezgy@hsu.ac.ir
3- Mechanical Engineering Department, Engineering Faculty, Hakim Sabzevari University, Sabzevar, Iran
Abstract:   (1473 Views)
In this study, a three-dimensional (3D) Peano series solution is presented for the dynamic analysis of functionally graded (FG). Layered magneto-electro-elastic (MEE) plates resting on elastic foundations with considering imperfect interfacial bonding and the interfacial imperfection is modeled using a generalized spring layer method. Regardless of the number of layers, the equations of motion, Gauss’ equations (for electrostatics and magnetostatics), and the boundary and interface conditions are satisfied exactly. In this method, no assumptions on deformations, stresses, magnetic and electric fields along the thickness direction are introduced. Finally, the governing partial differential equations are solved using state-space method. The proposed formulation is validated through comparison with other available results. Effects of a two-parameter elastic foundation, gradient index, bonding imperfection, applied mechanical and electrical loads on the dynamic response of the functionally graded magneto-electro-elastic (FGMEE) plate are discussed The obtained exact solution can be used to assess the accuracy of the theorems for layered FGMEE plates and validating finite element codes.
Full-Text [PDF 503 kb]   (587 Downloads)    

Received: 2018/03/19 | Accepted: 2018/11/13 | Published: 2019/03/1

1. 1- Annigeri AR, Ganesan N, Swarnamani S. Free vibrations of simply supported layered and multiphase magneto-electro-elastic cylindrical shells. Smart Materials and Structures. 2006;15(2):459-467. [Link] [DOI:10.1088/0964-1726/15/2/027]
2. Annigeri AR, Ganesan N, Swarnamani S. Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. Journal of Sound and Vibration. 2007;299(1-2):44-63. [Link] [DOI:10.1016/j.jsv.2006.06.044]
3. Etemadi E, Afaghi Khatibi A, Takaffoli M. 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact. Composite Structures. 2009;89(1):28-34. [Link] [DOI:10.1016/j.compstruct.2008.06.013]
4. Zamani J, Etemadi E, Hosseini Safari K, Afaghi Khatibi A. Modeling of high velocity impact in sandwich beams with FGM core. In: Bonora N, Brown E, Editors. Numerical modeling of materials under extreme conditions. 1st Edittion. Heidelberg: Springer; 2014. pp. 107-120. [Link] [DOI:10.1007/978-3-642-54258-9_5]
5. Phoenix SS, Satsangi SK, Singh BN. Layer-wise modelling of magneto-electro-elastic plates. Journal of Sound and Vibration. 2009;324(3-5):798-815. [Link] [DOI:10.1016/j.jsv.2009.02.025]
6. Yifeng Z, Lei Ch, Yu W, Xiaopin Z, Liangliang Z. Asymptotical construction of a Reissner-like model for multilayer functionally graded magneto-electro-elastic plates. Composite Structures. 2013;96:786-798. [Link] [DOI:10.1016/j.compstruct.2012.10.010]
7. Hosseini Hashemi Sh, Fadaee M, Atashipour SR. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates. International Journal of Mechanical Sciences. 2011;53(1):11-22. [Link] [DOI:10.1016/j.ijmecsci.2010.10.002]
8. Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics. 2001;68(4):608-618. [Link] [DOI:10.1115/1.1380385]
9. Pan E, Han F. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science. 2005;43(3-4):321-339. [Link] [DOI:10.1016/j.ijengsci.2004.09.006]
10. Bellifa H, Benrahou KH, Hadji L, Houari MSA, Tounsi A. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2016;38(1):265-275. [Link] [DOI:10.1007/s40430-015-0354-0]
11. Zhao L, Chen WQ. Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework. Composite Structures. 2010;92(7):1753-1761. [Link] [DOI:10.1016/j.compstruct.2009.11.029]
12. Bhangale RK, Ganesan N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. Journal of Sound and Vibration. 2006;294(4-5):1016-1038. [Link] [DOI:10.1016/j.jsv.2005.12.030]
13. Karami Khorramabadi M, Najafizadeh MM, Alibabaei Shahraki J, Khazaeinejad P. Effect of shear theories on free vibration of functionally graded plates. The International Conference on Applied Mechanics and Mechanical Engineering (AMME), 2008, Bangkok, Thailand. Publisher City?: World Academy of Science, Engineering and Technology; 2008. [Link]
14. Shahrjerdi A, Mustapha F, Bayat M, Sapuan SM, Zahari R, Shahzamanian MM. Natural frequency of F.G. rectangular plate by shear deformation theory. Conference on Advanced Materials and Nanotechnology, 3-5 November, 2009, Kuala Lumpur, Malaysia. Bristol: IOP Publishing; 2009. [Link]
15. Chen WQ, Lee KY. Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method. Composite Structures. 2004;64(3-4):275-283. [Link] [DOI:10.1016/j.compstruct.2003.08.010]
16. Chen WQ, Wang YF, Cai JB, Ye GR. Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces. International Journal of Solids and Structures. 2004;41(9-10):2429-2446. [Link] [DOI:10.1016/j.ijsolstr.2003.12.018]
17. Chen WQ, Zhou YY, Lü CF, Ding HJ. Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding. European Journal of Mechanics A Solids. 2009;28(4):720-727. [Link] [DOI:10.1016/j.euromechsol.2009.02.008]
18. Li D, Liu Y. Three-dimensional semi-analytical model for the static response and sensitivity analysis of the composite stiffened laminated plate with interfacial imperfections. Composite Structures. 2012;94(6):1943-1958. [Link] [DOI:10.1016/j.compstruct.2012.01.013]
19. Cheng ZQ, Jemah AK, Williams FW. Theory for multilayered anisotropic plates with weakened interfaces. Journal of Applied Mechanics. 1996;63(4):1019-1026. [Link] [DOI:10.1115/1.2787221]
20. Di Sciuva M. Geometrically nonlinear theory of multilayered plates with interlayer slips. American Institute of Aeronautics and Astronautics Journal. 1997;35(11):1753-1759. https://doi.org/10.2514/2.23 [Link] [DOI:10.2514/3.13741]
21. Huang ZY, Lü CF, Chen WQ. Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations. Composite Structures. 2008;85(2):95-104. [Link] [DOI:10.1016/j.compstruct.2007.10.010]
22. Chen J, Chen H, Pan E. Free vibration of functionally graded, magneto-electro-elastic, and multilayered plates. Acta Mechanica Solida Sinica. 2006;19(2):160-166. [Link] [DOI:10.1007/s10338-006-0619-3]
23. Cheraghi N, Lazgy Nazargah M. An exact bending solution for functionally graded magneto-electro-elastic plates resting on elastic foundations with considering interfacial imperfections. Modares Mechanical Engineering. 2016;15(12):346-356. [Persian] [Link]
24. Gantmacher FR. The theory of matrices. 1st Edition. 1st Volume. New York: Chelsea Publishing Company;1960. [Link]
25. Pease MC. Methods of matrix algebra. Volume 16. New York: Academic Press; 1965. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author