1. Levitas VI, Idesman AV, Olson GB. Continuum modeling of strain-induced martensitic transformation at shear-band intersections. Acta Materialia. 1998;47(1):219-233. [
Link] [
DOI:10.1016/S1359-6454(98)00314-0]
2. Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T. A new view on transformation induced plasticity (TRIP). International Journal of Plasticity. 2000;16(7-8):723-748. [
Link] [
DOI:10.1016/S0749-6419(99)00078-9]
3. Olson GB, Hartman H. Martensite and life: displacive transformations as biological processes. Le Journal de Physique Colloques. 1982;43(C4):PC4855-65. [
Link] [
DOI:10.1051/jphyscol:19824140]
4. Levitas VI, Idesman AV, Olson GB, Stein OE. Numerical modelling of martensitic growth in an elastoplastic material. Philosophical Magazine A. 2002;82(3):429-462. [
Link] [
DOI:10.1080/01418610208239609]
5. Bil C, Massey K, Abdullah EJ. Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures. 2013;24(7):879-898. [
Link] [
DOI:10.1177/1045389X12471866]
6. Levitas VI, Warren JA. Phase field approach with anisotropic interface energyand interface stresses: large strain formulation. Journal of the Mechanics and Physics of Solids. 2016;91:94-125. [
Link] [
DOI:10.1016/j.jmps.2016.02.029]
7. Finel A, Le Bouar Y, Gaubert A, Salman U. Phase field methods: microstructures, mechanical properties and complexity. Comptes Rendus Physique. 2010;11(3-4):245-256. [
Link] [
DOI:10.1016/j.crhy.2010.07.014]
8. Levitas VI, Preston DL, Lee DW. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Physical Review B. 2003;68(134201):1-24. [
Link] [
DOI:10.1103/PhysRevB.68.134201]
9. Levitas VI, Idesman AV, Preston DL. Microscale simulation of martensitic microstructure evolution. Physical Review Letters. 2004;93(10):105701. [
Link] [
DOI:10.1103/PhysRevLett.93.105701]
10. Wang Y, Khachaturyan AG. Multi-scale phase field approach to martensitic transformations. Materials Science and Engineering: A. 2006;438:55-63. [
Link] [
DOI:10.1016/j.msea.2006.04.123]
11. Zhang W, Jin YM, Khachaturyan AG. Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta Materialia. 2007;55(2):565-574. [
Link] [
DOI:10.1016/j.actamat.2006.08.050]
12. Levitas VI, Javanbakht M. Phase-field approach to martensitic phase transformations: effect of martensite-martensite interface energy. International Journal of Materials Research. 2011;102(2):652-665. [
Link] [
DOI:10.3139/146.110529]
13. Levitas VI, Lee DW, Preston DL. Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. International Journal of Plasticity. 2010;26(3):395-422. [
Link] [
DOI:10.1016/j.ijplas.2009.08.003]
14. Seol DJ, Hu SY, Li YL, Chen LQ, Oh KH. Computer simulation of martensitic transformation in constrained films. Materials Science Forum. 2002;408(2):1645-1650. [
Link] [
DOI:10.4028/www.scientific.net/MSF.408-412.1645]
15. Levitas VI, Idesman AV, Stein E. Finite element simulation of martensitic phase transitions in elastoplastic materials. International Journal of Solids and Structures. 1998;35(9-10):855-887. [
Link] [
DOI:10.1016/S0020-7683(97)00088-7]
16. Saxena A, Wu Y, Lookman T, Shenoy SR, Bishop AR. Hierarchical pattern formation in elastic materials. Physica A: Statistical Mechanics and its Applications. 1997;239(1-3):18-34. [
Link] [
DOI:10.1016/S0378-4371(96)00469-4]
17. Wang Y, Khachaturyan AG. Three-dimensional field model and computer simulation of martensitic transformation. Acta Materialia. 1997;45(2):759-773. [
Link] [
DOI:10.1016/S1359-6454(96)00180-2]
18. Levitas VI. Phase-field theory for martensitic phase transformations at large strains. International Journal of Plasticity. 2013;49:85-118. [
Link] [
DOI:10.1016/j.ijplas.2013.03.002]
19. Levitas VI, Levin VA, Zingerman KM, Freiman EI. Displacive phase transitions at large strains: phase-field theory and simulations. Physical Review Letters. 2009;103(2):025702 [
Link] [
DOI:10.1103/PhysRevLett.103.025702]
20. Chen LQ, Shen J. Applications of semi-implicit Fourierspectral method to phase field equations. Computer Physics Communications. 1998;108(2-3):147-158. [
Link] [
DOI:10.1016/S0010-4655(97)00115-X]
21. Yamanaka A, Takaki T, Tomita Y. Elastoplastic phase-field simulation of self- and plastic accommodations in martensitic transformation. Materials Science and Engineering: A. 2008;491(1-2):378-384. [
Link] [
DOI:10.1016/j.msea.2008.02.035]
22. Mahapatra DR, Melnik RVN. Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau-Ginzburg free energy model. Mechanics of Advanced Materials and Structures. 2006;13(6):443-455. [
Link] [
DOI:10.1080/15376490600862863]
23. Cho JY, Idesman AV, Levitas VI, Park T. Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg-Landau theory. International Journal of Solids and Structures. 2012;49(14):1973-1992. [
Link] [
DOI:10.1016/j.ijsolstr.2012.04.008]
24. Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation. International Journal of Plasticity. 2009;25(2):239-280. [
Link] [
DOI:10.1016/j.ijplas.2008.02.004]
25. Levitas VI, Ozsoy IB. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples. International Journal of Plasticity. 2009;25(3):546-583. [
Link] [
DOI:10.1016/j.ijplas.2008.02.005]
26. Levitas VI, Javanbakht M. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Physical Review Letters. 2010;105(16):165701. [
Link] [
DOI:10.1103/PhysRevLett.105.165701]
27. Saitoh KI, Liu WK. Molecular dynamics study of surface effect on martensitic cubic-to-tetragonal transformation in Ni-Al alloy. Computational Materials Science. 2009;46(2):531-544. [
Link] [
DOI:10.1016/j.commatsci.2009.04.025]
28. Levitas VI. Phase-field theory for martensitic phase transformations at large strains. International Journal of Plasticity. 2013;49:85-118. [
Link] [
DOI:10.1016/j.ijplas.2013.03.002]
29. Levitas VI, Warren JA. Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses. Physical Review B. 2015;92(14):144106. [
Link] [
DOI:10.1103/PhysRevB.92.144106]
30. Levitas VI. Phase field approach to martensitic phase transformations with large strains and interface stresses. Journal of the Mechanics and Physics of Solids. 2014;70:154-189. [
Link] [
DOI:10.1016/j.jmps.2014.05.013]
31. Javanbakht M, Barati E. Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Computational Materials Science. 2016;115:137-144. [
Link] [
DOI:10.1016/j.commatsci.2015.10.037]
32. Christian JW, Mahajan S. Deformation twinning. Progress in Materials Science. 1995;39(1-2):1-157. [
Link] [
DOI:10.1016/0079-6425(94)00007-7]
33. Levitas VI, Javanbakht M. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale. 2014;6(1):162-166. [
Link] [
DOI:10.1039/C3NR05044K]
34. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. Application of phase field microelasticity theory of phase transformations to dislocation dynamics: model and three-dimensional simulations in a single crystal. Philosophical Magazine Letters. 2001;81(6):385-393. [
Link] [
DOI:10.1080/09500830110044564]