Volume 19, Issue 10 (October 2019)                   Modares Mechanical Engineering 2019, 19(10): 2463-2469 | Back to browse issues page

XML Persian Abstract Print


1- Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran
2- Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran , mnouri@iust.ac.ir
Abstract:   (2734 Views)
The superhydrophobic surfaces have many applications, including skin friction reduction, anti-icing, anti-fouling, and self-cleaning surfaces. Also, with the precise design of these surfaces, it is possible to increase the heat transfer coefficient in the condensation heat transfer. In recent years, a variety of methods have been proposed for the fabrication of the superhydrophobic surfaces, some of which are very complex and not applicable for industrial uses. In this paper, a nanocomposite superhydrophobic coating is produced in a simple and applicable way for large surfaces. Using this method, a superhydrophobic surface with surface structures in multi-scale and with a sliding angle of less than 5 degrees is obtained. After evaluating the specification of superhydrophobic surfaces, slip length measurement of the coating is performed using a fabricated measurement system. It should be noted that the slip length of the superhydrophobic surface is a characteristic feature of these surfaces and always its measurement is associated with challenges. In this research, the slip length of the created coating was measured by use of the proposed measurement system. The results show that the slip lengths of about 40-500 microns can be achieved by use of the proposed measurement system.
Full-Text [PDF 934 kb]   (2195 Downloads)    
Article Type: Original Research | Subject: Experimental Fluid Mechanics
Received: 2018/04/6 | Accepted: 2019/02/13 | Published: 2019/10/22

References
1. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, et al. Super‐hydrophobic surfaces: From natural to artificial. Advanced Materials. 2002;14(24):1857-1860. [Link] [DOI:10.1002/adma.200290020]
2. Lafuma A, Quéré D. Superhydrophobic states. Nature Materials. 2003;2:457-460. [Link] [DOI:10.1038/nmat924]
3. Blossey R. Self-cleaning surfaces-virtual realities. Nature Materials. 2003;2:301-306. [Link] [DOI:10.1038/nmat856]
4. Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling. 2006;22(5):339-360. [Link] [DOI:10.1080/08927010600980223]
5. Ma M, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC. Electrospun poly (Styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir. 2005;21(12):5549-5554. [Link] [DOI:10.1021/la047064y]
6. Agarwal S, Horst S, Bognitzki M. Electrospinning of fluorinated polymers: Formation of superhydrophobic surfaces. Macromolecular Materials and Engineering. 2006;291(6):592-601. [Link] [DOI:10.1002/mame.200600076]
7. Ogawa T, Ding B, Sone Y, Shiratori S. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology. 2007;18(16):165607. [Link] [DOI:10.1088/0957-4484/18/16/165607]
8. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P. Superhydrophobic to superhydrophilic transitions of sol-gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics. 2007;103(1):112-117. [Link] [DOI:10.1016/j.matchemphys.2007.01.018]
9. Li X, Chen G, Ma Y, Feng L, Zhao H, Jiang L, et al. Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent-nonsolvent coating. Polymer. 2006;47(2):506-509. [Link] [DOI:10.1016/j.polymer.2005.08.097]
10. Shi F, Song Y, Niu J, Xia X, Wang Z, Zhang X. Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chemistry of Materials. 2006;18(5):1365-1368. [Link] [DOI:10.1021/cm052502n]
11. Han JT, Jang Y, Lee DY, Park JH, Song SH, Ban DY, et al. Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. Journal of Materials Chemistry. 2005;15(30):3089-3092. [Link] [DOI:10.1039/b504850h]
12. Baldacchini T, Carey JE, Zhou M, Mazur E. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir. 2006;22(11):4917-4919. [Link] [DOI:10.1021/la053374k]
13. Lacroix LM, Lejeune M, Ceriotti L, Kormunda M, Meziani T, Colpo P, et al. Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films. Surface Science. 2005;592(1-3):182-188. [Link] [DOI:10.1016/j.susc.2005.07.006]
14. Wang MF, Raghunathan N, Ziaie B. A nonlithographic top-down electrochemical approach for creating hierarchical (micro− nano) superhydrophobic silicon surfaces. Langmuir. 2007;23(5):2300-2303. [Link] [DOI:10.1021/la063230l]
15. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir. 2002;18(15):5818-5822. [Link] [DOI:10.1021/la020088p]
16. Xie Q, Fan G, Zhao N, Guo X, Xu J, Dong J, et al. Facile creation of a bionic super-hydrophobic block copolymer surface. Advanced Materials. 2004;16(20):1830-1833. [Link] [DOI:10.1002/adma.200400074]
17. Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials. 2006;16(4):568-574. [Link] [DOI:10.1002/adfm.200500624]
18. Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C. Superhydrophobic composite films produced on various substrates. Langmuir. 2008;24(19):11225-11232. [Link] [DOI:10.1021/la801817e]
19. Chen A, Peng X, Koczkur K, Miller B. Super-hydrophobic tin oxide nanoflowers. Chemical Communications. 2004;(17):1964-1965. [Link] [DOI:10.1039/b407313d]
20. Shibuichi S, Yamamoto T, Onda T, Tsujii K. Super water-and oil-repellent surfaces resulting from fractal structure. Journal of Colloid and Interface Science. 1998;208(1):287-294. [Link] [DOI:10.1006/jcis.1998.5813]
21. Sakaue H, Tabei T, Kameda M. Hydrophobic monolayer coating on anodized aluminum pressure-sensitive paint. Sensors and Actuators B: Chemical. 2006;119(2):504-511. [Link] [DOI:10.1016/j.snb.2006.01.010]
22. Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, et al. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir. 2007;23(4):2169-2174. [Link] [DOI:10.1021/la0620758]
23. Karunakaran RG, Lu CH, Zhang Z, Yang S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤ 100 nm). Langmuir. 2011;27(8):4594-4602. [Link] [DOI:10.1021/la104067c]
24. Deng X, Mammen L, Zhao Y, Lellig P, Müllen K, Li C, et al. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Advanced Materials. 2011;23(26):2962-2965. [Link] [DOI:10.1002/adma.201100410]
25. Michielsen S, Lee HJ. Design of a superhydrophobic surface using woven structures. Langmuir. 2007;23(11):6004-6010. [Link] [DOI:10.1021/la063157z]
26. Xie Q, Xu J, Feng L, Jiang L, Tang W, Luo X, et al. Facile creation of a super‐amphiphobic coating surface with bionic microstructure. Advanced Materials. 2004;16(4):302-305. [Link] [DOI:10.1002/adma.200306281]
27. Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. Journal of Materials Chemistry. 2007;(11):1071-1078. [Link] [DOI:10.1039/B613914K]
28. Wang T, Hu X, Dong S. A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chemical Communications. 2007;(18):1849-1851. [Link] [DOI:10.1039/b616778k]
29. Maali A, Bhushan B. Slip-length measurement of confined air flow using dynamic atomic force microscopy. Physical Review E. 2008;78(2):027302. [Link] [DOI:10.1103/PhysRevE.78.027302]
30. Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids. 2009;21(8):085103. [Link] [DOI:10.1063/1.3207885]
31. Nouri NM, Saadat Bakhsh M, Bagheri R. Robust superhydrophobic surface with polytetrafluoroethylene (PTFE), micro sized aluminum particles and SiO2 nano-particles. Modares Mechanical Engineering. 2016;15(11):26-32. [Persian] [Link]
32. Nouri NM, Shamsi M, Saadat Bakhsh M. Hydrophobic coating of aluminum flake particles and application of these particles to produce superhydrophobic surfaces. Modares Mechanical Engineering. 2016;16(4):289-296. [Persian] [Link]
33. Sekhavat S, Nouri NM, Hatam Sh, inventors. Using of an electric stepper motor to measure the dynamic contact angle of the droplet. Iran Patent 93603. 2018. [Unknown Language] [Link]
34. Saadat Bakhsh M, Nouri NM, Foshat S, inventors. Slip lingth measurement system of the superhydrophobic surfaces. Iran Patent 92773. 2017. [Unknown Language] [Link]
35. Jung YC, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter. 2010;22(3):035104. [Link] [DOI:10.1088/0953-8984/22/3/035104]
36. Park H, Sun G, Kim CJ. Superhydrophobic turbulent drag reduction as a function of surface grating parameters. Journal of Fluid Mechanics. 2014;747:722-734. [Link] [DOI:10.1017/jfm.2014.151]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.