Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 2013-2022 | Back to browse issues page

XML Persian Abstract Print

1- Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
2- Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran , s.hamedhoseini@uut.ac.ir
Abstract:   (3162 Views)
In this paper, the superelastic response of porous shape memory alloys (SMAs) containing spherical pore shape with pore volume fraction between 5% and 40% has been considered. Using digital images processing, the distribution of pores in 2D images of porous NiTi SMA has been extracted. In this method, the 3D distribution of pores has been appraised with the Monte Carlo method and 3D porous SMA models have been established. To investigate the superelastic behavior of shape memory alloys, the Lagoudas’s phenomenological model was used, in which a phase transformation function was used. To homogenize the porous SMAs, the Young’s modulus and the phase transformation function have been assumed to be a function of the pore volume fraction. Based on the proposed constitutive model a numerical procedure was proposed and executed by the commercial finite element code ABAQUS with developing a user material subroutine. The numerical results show that the Young’s modulus and the phase transformation function are the approximately linear function of the pore volume fraction; furthermore, these results demonstrate the accuracy of the proposed homogenization method to predict the superelastic behavior of porous SMAs.
Full-Text [PDF 1322 kb]   (2770 Downloads)    
Article Type: Original Research | Subject: Smart Materials
Received: 2018/04/13 | Accepted: 2019/01/29 | Published: 2019/08/12

1. Martynova I, Skorohod V, Solonin S, Goncharuk S. Shape memory and superelasticity behavior of porous Ti-Ni material. Journal de Physique IV. 1991;01(C4):C4-421-C4-426. [Link] [DOI:10.1051/jp4:1991463]
2. Li BY, Rong LJ, Li YY. Porous NiTi alloy prepared from elemental powder sintering. Journal of Materials Research. 1998;13(10):2847-2851. [Link] [DOI:10.1557/JMR.1998.0389]
3. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology. 1977;99(1):2-15. [Link] [DOI:10.1115/1.3443401]
4. Tvergaard V. On localization in ductile materials containing spherical voids. International Journal of Fracture. 1982;18(4):237-252. [Link]
5. Danas K, Ponte Castañeda P. A finite-strain model for anisotropic viscoplastic porous media: I-Theory. European Journal of Mechanics A Solids. 2009;28(3):387-401. https://doi.org/10.1016/j.euromechsol.2008.11.003 [Link] [DOI:10.1016/j.euromechsol.2008.11.002]
6. Bilger N, Auslender F, Bornert M, Moulinec H, Zaoui A. Bounds and estimates for the effective yield surface of porous media with a uniform or a nonuniform distribution of voids. European Journal of Mechanics A Solids. 2007;26(5):810-836. [Link] [DOI:10.1016/j.euromechsol.2007.01.004]
7. Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T. Computational homogenization of elasto-plastic porous metals. International Journal of Plasticity. 2012;29:102-119. [Link] [DOI:10.1016/j.ijplas.2011.08.005]
8. Khdir YK, Kanit T, Zaïri F, Naït-Abdelaziz M. A computational homogenization of random porous media: Effect of void shape and void content on the overall yield surface. European Journal of Mechanics A Solids. 2015;49:137-145. [Link] [DOI:10.1016/j.euromechsol.2014.07.001]
9. Li B, Rong L, Li Y. Microstructure and superelasticity of porous NiTi alloy. Science in China Series E Technological Sciences. 1999;42(1):94-99. [Link] [DOI:10.1007/BF02917064]
10. Li BY, Rong LJ, Luo XH, Li YY. Transformation behavior of sintered porous NiTi alloys. Metallurgical and Materials Transactions A. 1999;30(11):2753-2756. [Link] [DOI:10.1007/s11661-999-0112-y]
11. De Giorgi VG, Qidwai MA. A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Materials and Structures. 2002;11(3):435. [Link] [DOI:10.1088/0964-1726/11/3/314]
12. Entchev PB, Lagoudas DC. Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials. 2002;34(1):1-24. [Link] [DOI:10.1016/S0167-6636(01)00088-6]
13. Sepe V, Auricchio F, Marfia S, Sacco E. Homogenization techniques for the analysis of porous SMA. Computational Mechanics. 2016;57(5):755-772. [Link] [DOI:10.1007/s00466-016-1259-1]
14. Fatemi Dehaghani P, Hatefi Ardakani S, Bayesteh H, Mohammadi S. 3D hierarchical multiscale analysis of heterogeneous SMA based materials. International Journal of Solids and Structures. 2017;118-119:24-40. [Link] [DOI:10.1016/j.ijsolstr.2017.04.025]
15. Karamooz Ravari MR, Shahriari B. A numerical model based on Voronoi tessellation for the simulation of the mechanical response of porous shape memory alloys. Meccanica. 2018;53(13):3383-3397. [Link] [DOI:10.1007/s11012-018-0883-6]
16. Boyd JG, Lagoudas DC. A thermodynamical constitutive model for shape memory materials, part I. the monolithic shape memory alloy. International Journal of Plasticity. 1996;12(6):805-842. [Link] [DOI:10.1016/S0749-6419(96)00030-7]
17. Cisse C, Zaki W, Zineb TB. A review of constitutive models and modeling techniques for shape memory alloys. International Journal of Plasticity. 2016;76:244-284. [Link] [DOI:10.1016/j.ijplas.2015.08.006]
18. Lagoudas DC, editor. Shape memory alloys: Modeling and engineering applications. New York: Springer; 2008. [Link]
19. Tanaka K. A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior. Res Mechanica. 1986;18:251-263. [Link]
20. Lemieux C. Monte Carlo and quasi-Monte Carlo sampling. New York: Springer Science & Business Media; 2009. [Link]
21. Gibson LJ, Ashby MF. Cellular solids: Structure and properties. Cambridge UK: Cambridge University Press; 1999. [Link]
22. Panico M, Brinson LC. Computational modeling of porous shape memory alloys. International Journal of Solids and Structures. 2008;45(21):5613-5626. [Link] [DOI:10.1016/j.ijsolstr.2008.06.005]
23. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. Journal of Biomechanics. 1999;32(4):437-441. [Link] [DOI:10.1016/S0021-9290(98)00177-8]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.