1. Markowski GR. Reducing blowoff in cascade impactor measurements. Aerosol Science and Technology. 1984;3(4):431-439. [
Link] [
DOI:10.1080/02786828408959030]
2. Marple VA. History of impactors-the first 110 years. Aerosol Science and Technology. 2004;38(3):247-292. [
Link] [
DOI:10.1080/02786820490424347]
3. Marple VA, Willeke K. Inertial impactors: Theory, design and use. In: Liu BYH, editor. Fine particles: Aerosol generation, measurement, sampling, and analysis. New York: Academic Press; 1976. pp. 411-446. [
Link] [
DOI:10.1016/B978-0-12-452950-2.50023-3]
4. Huang CH, Tsai CJ. Influence of impaction plate diameter and particle density on the collection efficiency of round-nozzle inertial impactors. Aerosol Science and Technology. 2002;36(6):714-720. [
Link] [
DOI:10.1080/02786820290038410]
5. Vinchurkar S, Longest PW, Peart J. CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. Journal of Aerosol Science. 2009;40(9):807-822. [
Link] [
DOI:10.1016/j.jaerosci.2009.05.005]
6. Kim YJ, Yook SJ. Enhancement of collection efficiency of inertial impactors using elliptical concave impaction plates. Journal of Aerosol Science. 2011;42(12):898-908. [
Link] [
DOI:10.1016/j.jaerosci.2011.08.006]
7. Hata M, Linfa B, Otani Y, Furuuchi M. Performance evaluation of an Andersen cascade impactor with an additional stage for nanoparticle sampling. Aerosol and Air Quality Research. 2012;12(6):1041-1048. [
Link] [
DOI:10.4209/aaqr.2012.08.0204]
8. Kim MK, Kim WG, Lee KS, Yook SJ. Collection efficiency of round-nozzle impactors with horizontal annular inlet. Journal of Aerosol Science. 2014;74:63-69. [
Link] [
DOI:10.1016/j.jaerosci.2014.04.007]
9. Park CW, Kim G, Yook SJ, Ahn KH. Investigation of collection efficiency of round-nozzle impactors at different atmospheric pressures and temperatures. Advanced Powder Technology. 2015;26(3):868-873. [
Link] [
DOI:10.1016/j.apt.2015.02.014]
10. Talebizadeh P, Rahimzadeh H, Ahmadi G. Study the thermophoresis effect on the deposition of nano-particles from diesel engine exhaust after the dilution tunnel. Modares Mechanical Engineering. 2016;16(4):383-390. [Persian] [
Link]
11. Li H, Faulkner WB, Haglund JS, Lacey RE. Effect of convergence angle on impactor performance. Aerosol Science and Technology. 2017;51(8):981-987. [
Link] [
DOI:10.1080/02786826.2017.1322174]
12. Tsai CJ, Cheng YH. Solid particle collection characteristics on impaction surfaces of different designs. Aerosol Science and Technology. 1995;23(1):96-106. [
Link] [
DOI:10.1080/02786829508965297]
13. Lee BU, Kim SS. The effect of varying impaction plate temperature on impactor performance: Experimental studies. Journal of Aerosol Science. 2002;33(3):451-457. [
Link] [
DOI:10.1016/S0021-8502(01)00191-4]
14. McFarland AR, Hu S, Baehl MM, Richardson KW, Poeschl PM. In-line impactor inlet for bioaerosol sampling. Aerosol Science and Technology. 2011;45(6):701-711. [
Link] [
DOI:10.1080/02786826.2011.553249]
15. Son M, Lim S, Sung G, Kim T, Ha Y, Choi K, et al. Development of a novel aerosol impactor utilizing inward flow from a ring-shaped nozzle. Journal of Aerosol Science. 2015;85:1-9. [
Link] [
DOI:10.1016/j.jaerosci.2015.02.004]
16. Cheon TW, Lee JY, Bae JY, Yook SJ. Enhancement of collection efficiency of an inertial impactor using an additional punched impaction plate. Aerosol and Air Quality Research. 2017;17(10):2349-2357. [
Link] [
DOI:10.4209/aaqr.2017.01.0018]
17. Asbach Ch, Clavaguera S, Todea AM. Measurement methods for nanoparticles in indoor and outdoor air. In: Viana M, editor. Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios. Cham: Springer; 2015. pp. 19-49. [
Link] [
DOI:10.1007/698_2015_423]
18. Shamshirband Sh, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, et al. Performance investigation of micro-and nano-sized particle erosion in a 90 elbow using an ANFIS model. Powder Technology. 2015;284:336-343. [
Link] [
DOI:10.1016/j.powtec.2015.06.073]
19. Sislian PR, Pham D, Zhang X, Li M, Mädler L, Christofides PD. Bacterial aerosol neutralization by aerodynamic shocks using an impactor system: Experimental results for E.coli and analysis. Chemical Engineering Science. 2010;65(4):1490-1502. [
Link] [
DOI:10.1016/j.ces.2009.10.029]
20. Hinds WC. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd Edition. Hoboken: John Wiley & Sons; 2012. [
Link]
21. Hari S, Hassan YA, McFarland AR. Optimization studies on a slit virtual impactor. Particulate Science and Technology. 2006;24(2):105-136. [
Link] [
DOI:10.1080/02726350500403298]
22. Straub DJ, Collett Jr JL. Numerical and experimental performance evaluation of the 3-stage FROSTY supercooled cloud collector. Aerosol Science and Technology. 2001;34(3):247-261. [
Link] [
DOI:10.1080/02786820120337]
23. Lutro HF. The effect of thermophoresis on the particle deposition on a cylinder [Dissertation]. Trondheim:Norwegian University of Science and Technology; 2012. [
Link]
24. Talbot L, Cheng RK, Schefer RW, Willis DR. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics. 1980;101(4):737-758. [
Link] [
DOI:10.1017/S0022112080001905]