Volume 19, Issue 6 (June 2019)                   Modares Mechanical Engineering 2019, 19(6): 1319-1325 | Back to browse issues page

XML Persian Abstract Print


Mechanical Engineering Department, Shahid Nikbakht Engineering Faculty, University of Sistan and Baluchestan, Zahedan, Iran , hassan.azarkish@eng.usb.ac.ir
Abstract:   (8987 Views)
In the present work, a novel configuration is proposed to improve the cooling performance of a capillary-driven system.  In this approach, the possibility of meniscus formation inside the is increased for a wide range of operating temperature by controlling the capillary and viscous forces. The proposed consists of three sections. The first section is a narrow part of to control the pressure drop. The second section of is an evaporator. The meniscus is formed in this section due to of the capillary and viscous forces. It can move along the   The third section is a wide part of The meniscus cannot move further in this section due to decreasing the capillary pressure. The evaporation rate from meniscus is estimated by using the thin film evaporation theory. Results show that the heat flux up to 30-100 W/cm2 70-100⁰C) can be dissipated by the evaporation mechanism from a hydrophilic membrane.
Full-Text [PDF 585 kb]   (4095 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/04/17 | Accepted: 2018/12/16 | Published: 2019/06/1

References
1. Plawsky JL, Fedorov AG, Garimella SV, Ma HB, Maroo SC, Chen L, et al. Nano-and microstructures for thin-film evaporation-A review. Nanoscale and Microscale Thermophysical Engineering. 2014;18(3):251-269. [Link] [DOI:10.1080/15567265.2013.878419]
2. Wang H, Garimella SV, Murthy JY. Characteristics of an evaporating thin film in a microchannel. International Journal of Heat and Mass Transfer. 2007;50(19-20):3933-3942. [Link] [DOI:10.1016/j.ijheatmasstransfer.2007.01.052]
3. Bodla KK, Murthy JY, Garimella SV. Evaporation analysis in sintered wick microstructures. International Journal of Heat and Mass Transfer. 2013;61:729-741. [Link] [DOI:10.1016/j.ijheatmasstransfer.2013.02.038]
4. Azarkish H, Arslan S, Behzadmehr A, Sheikholeslami TF, Sarvari SMH, Fréchette LG. Experimental and numerical investigation of a shaped microchannel evaporator for a micro Rankine cycle application. International Journal of Thermal Sciences. 2015;96:191-200. [Link] [DOI:10.1016/j.ijthermalsci.2015.05.010]
5. Narayanan Sh, Fedorov AG, Joshi YK. Heat and mass transfer during evaporation of thin liquid films confined by nanoporous membranes subjected to air jet impingement. International Journal of Heat and Mass Transfer. 2013;58(1-2):300-311. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.11.015]
6. Azarkish H, Behzadmehr A, Fanaei Sheikholeslami T, Sarvari SMH, Fréchette LG. A novel silicon bi-textured micropillar array to provide fully evaporated steam for a micro-Rankine cycle application. Journal of Physics D Applied Physics. 2014;47(47):475301. [Link] [DOI:10.1088/0022-3727/47/47/475301]
7. Adera S, Antao D, Raj R, Wang EN. Design of micropillar wicks for thin-film evaporation. International Journal of Heat and Mass Transfer. 2016;101:280-294. [Link] [DOI:10.1016/j.ijheatmasstransfer.2016.04.107]
8. Ćoso D, Srinivasan V, Lu MC, Chang JY, Majumdar A. Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes. Journal of Heat Transfer. 2012;134(10):101501. [Link] [DOI:10.1115/1.4006106]
9. Hardt S, Schilder B, Tiemann D, Kolb G, Hessel V, Stephan P. Analysis of flow patterns emerging during evaporation in parallel microchannels. International Journal of Heat and Mass Transfer. 2007;50(1-2):226-239. [Link] [DOI:10.1016/j.ijheatmasstransfer.2006.06.015]
10. Azarkish H, Behzadmehr A, Fanaei Sheikholeslami T, Sarvari SMH, Fréchette LG. Water evaporation phenomena on micro and nanostructured surfaces. International Journal of Thermal Sciences. 2015;90:112-121. [Link] [DOI:10.1016/j.ijthermalsci.2014.12.005]
11. Azarkish H, Behzadmehr A, Frechette LG, Fanaei Sheikholeslami T, Hosseini Sarvari SM. A modified disjoining pressure model for thin film evaporation of water. ASME International Mechanical Engineering Congress and Exposition, 15-21 November, 2013, San Diago, California, USA. New York: American Society of Mechanical Engineers; 2013. [Link] [DOI:10.1115/IMECE2013-62986]
12. Wayner Jr PC, Kao YK, LaCroix LV. The interline heat-transfer coefficient of an evaporating wetting film. International Journal of Heat and Mass Transfer. 1976;19(5):487-492. [Link] [DOI:10.1016/0017-9310(76)90161-7]
13. Do KH, Kim SJ, Garimella SV. A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. International Journal of Heat and Mass Transfer. 2008;51(19-20):4637-4650. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.02.039]
14. Zhao JJ, Duan YY, Wang XD, Wang BX. Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels. International Journal of Heat and Mass Transfer. 2011;54(5-6):1259-1267. [Link] [DOI:10.1016/j.ijheatmasstransfer.2010.10.026]
15. Steinke ME, Kandlikar SG. Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences. 2006;45(11):1073-1083. [Link] [DOI:10.1016/j.ijthermalsci.2006.01.016]
16. Dhillon NS, Buongiorno J, Varanasi KK. Critical heat flux maxima during boiling crisis on textured surfaces. Nature Communications. 2015;6:8247. [Link] [DOI:10.1038/ncomms9247]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.