Volume 19, Issue 10 (October 2019)                   Modares Mechanical Engineering 2019, 19(10): 2523-2534 | Back to browse issues page

XML Persian Abstract Print

1- New Technologies Engineering Depatment, Shahid Beheshti University, Tehran, Iran , m_navabi@sbu.ac.ir
2- New Technologies Engineering Depatment, Shahid Beheshti University, Tehran, Iran
Abstract:   (3374 Views)
The helicopter rotor blade flapping results in a helicopter rotor symmetry lift and has a significant impact on stability and control. In this paper, the modeling of helicopter flapping in the presence of aerodynamic forces and moments and the effect of offset, blade torque, hinge resistant spring, blade geometry, natural frequency effect, and forward ratio to achieve reliable relief from flapping was investigated. In the simulation, the effects of small and large flapping angles and the role of offset on the momentum entered on the blade, as well as the role of the forward ratio in moments were investigated. Different models of flapping dynamics and equations for the flight of a hover and are fully presented and all of the important issues are examined for a numerical example. Also, the effect of non-uniform flow in the flapping equations of the blade is the effect of the natural frequency of the flapping motion with the blade offset. This leads to increasing the accuracy in modeling the phenomenon of on a helicopter. Simulation results show the importance and impact of offsets, moments and forces imposed on the blade in the motion of the flapping, which leads to an increase of accuracy in modeling.
Full-Text [PDF 1214 kb]   (2484 Downloads)    
Article Type: Original Research | Subject: Sonic Flow
Received: 2018/04/21 | Accepted: 2019/02/24 | Published: 2019/10/22

1. Arcidiacono PJ. A method for computation of the induced velocity field of a rotor in forward flight, suitable for application to tandem rotor configurations. Journal of the American Helicopter Society. 1964;9(3):34-45. [Link] [DOI:10.4050/JAHS.9.34]
2. Bramwell ARS, Balmford D, Done G. Bramwell's helicopter dynamics. Oxford UK: Butterworth-Heinemann; 2001. pp. 1-32. [Link] [DOI:10.1016/B978-075065075-5/50004-X]
3. Gordon Leishman J. Principles of helicopter aerodynamics. New York: Cambridge University Press; 2006. pp. 174-185. [Link]
4. Perdomo O, Wei FSJ. On the flapping motion of a helicopter blade. Applied Mathematical Modelling. 2017;46:299-311. [Link] [DOI:10.1016/j.apm.2017.01.055]
5. Seddon J, Newman S. Basic helicopter aerodynamics. Chichester: John Wiley & Sons; 2011. pp. 85-87. [Link] [DOI:10.1002/9781119994114]
6. Rogers JP. Applications of an analytic stall model to time‐history and eigenvalue analysis of rotor blades. Journal of the American Helicopter Society. 1984;29(1):25-33. [Link] [DOI:10.4050/JAHS.29.25]
7. Majhi JR, Ganguli R. Modeling helicopter rotor blade flapping motion considering nonlinear aerodynamics. Computer Modeling in Engineering and Sciences. 2008;27(1):25-36. [Link]
8. Chandiramani NK, Plaut RH, Librescu LI. Non-linear flutter of a buckled shear-deformable composite panel in a high-supersonic flow. International Journal of Non Linear Mechanics. 1995;30(2):149-167. [Link] [DOI:10.1016/0020-7462(94)00028-9]
9. Librescu L, Chiocchia G, Marzocca P. Implications of cubic physical/aerodynamic non-linearities on the character of the flutter instability boundary. International Journal of Non Linear Mechanics. 2003;38(2):173-199. [Link] [DOI:10.1016/S0020-7462(01)00054-3]
10. Patil MJ, Hodges DH. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. Journal of Fluids and Structures. 2004;19(7):905-915. [Link] [DOI:10.1016/j.jfluidstructs.2004.04.012]
11. Tang DM, Dowell EH. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures. 2004;19(3):291-306. [Link] [DOI:10.1016/j.jfluidstructs.2003.10.007]
12. Cesnik CES, Opoku DG, Nitzsche F, Cheng T. Active twist rotor blade modelling using particle-wake aerodynamics and geometrically exact beam structural dynamics. Journal of Fluids and Structures. 2004;19(5):651-668. [Link] [DOI:10.1016/j.jfluidstructs.2004.01.007]
13. Desceliers C, Soize C. Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization. International Journal of Non Linear Mechanics. 2004;39(3):343-368. [Link] [DOI:10.1016/S0020-7462(02)00191-9]
14. Popescu B, Hodges DH. Asymptotic treatment of the trapeze effect in finite element cross-sectional analysis of composite beams. International Journal of Non Linear Mechanics. 1999;34(4):709-721. [Link] [DOI:10.1016/S0020-7462(98)00049-3]
15. Tongue BH, Flowers G. Non-linear rotorcraft analysis. International Journal of Non Linear Mechanics. 1988;23(3):189-203. [Link] [DOI:10.1016/0020-7462(88)90011-X]
16. Vu NA, Lee JW. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology. 2015;42:106-117. [Link] [DOI:10.1016/j.ast.2014.10.020]
17. Cai G, Wang B, Chen BM, Lee TH. Design and implementation of a flight control system for an unmanned rotorcraft using RPT control approach. Asian Journal of Control. 2013;5(1):95-119. [Link] [DOI:10.1002/asjc.504]
18. Goulos I, Pachidis V, Pilidis P. Lagrangian formulation for the rapid estimation of helicopter rotor blade vibration characteristics. The Aeronautical Journal. 2014;118(1206):861-901. [Link] [DOI:10.1017/S000192400000960X]
19. Branlard E, Gaunaa M, Machefaux E. Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt. Journal of Physics: Conference Series. 2014;524: 012124. [Link] [DOI:10.1088/1742-6596/524/1/012124]
20. Cameron CG. Performance and loads of a lift offset rotor: Hover and wind tunnel testing. Journal of the American Helicopter Society. 2019;64(2):1-12. [Link] [DOI:10.4050/JAHS.64.022002]
21. Friedmann PP. Rotary-wing aeroelasticity: Current status and future trends. AIAA Journal. 2004;42(10):1953-1972. [Link] [DOI:10.2514/1.9022]
22. Johnson W. Milestones in rotorcraft aeromechanics: The 30th Alexander A. Nikolsky Honorary lecture. Journal of the American Helicopter Society. 2011;56(3):031001. [Link] [DOI:10.4050/JAHS.56.031001]
23. McLean D. Automatic flight control systems. New Jersey: Prentice Hall; 1990. pp. 121-123. [Link]
24. Sitaraman J, Potsdam M, Wissink A, Jayaraman B, Datta A, Mavriplis D. et al. Rotor loads prediction using helios: A multisolver framework for rotorcraft aeromechanics analysis. Journal of Aircraft. 2013;50(2):478-492. [Link] [DOI:10.2514/1.C031897]
25. Van Der Wall BG. Analytical estimate of rotor blade flapping caused by a straight vortex disturbance. Journal of the American Helicopter Society. 2017;62(4):1-6. [Link] [DOI:10.4050/JAHS.62.045001]
26. Datta A, Yeo H, Norman TR. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios. Journal of the American Helicopter Society. 2013;58(2):1-17. [Link] [DOI:10.4050/JAHS.58.022004]
27. Bennett JAJ. The era of the autogiro. The Aeronautical Journal. 1961;65(610):649-660. [Link] [DOI:10.1017/S0368393100075490]
28. Harris FD. Rotor performance at high advance ratio: Theory versus test [Internet]. Washington: NASA; 2008 [cited 2018 July 15]. Available from: https://ntrs.nasa.gov/search.jsp?R=20090005978 [Link]
29. Ekblad M. Reduced-order modeling and controller design for a high-performance helicopter. Journal of Guidance, Control, and Dynamics. 1990;13(3):439-449. [Link] [DOI:10.2514/3.25356]
30. Lee S, Kim H, Lee S. Analysis of aerodynamic characteristics on a counter-rotating wind turbine. Current Applied Physics. 2010;10(2):S339-S342. [Link] [DOI:10.1016/j.cap.2009.11.073]
31. Gessow A, Crim AD. An extension of lifting rotor theory to cover operation at large angles of attack and high inflow conditions [Internet]. Langley Field VA: NACA; 1952 [cited 2018 June 14]. Available from: https://ntrs.nasa.gov/search.jsp?R=19930083369 [Link]
32. Majhi JR, Ganguli R. Helicopter blade flapping with and without small angle assumption in the presence of dynamic stall. Applied Mathematical Modelling. 2010;34(12):3726-3740 [Link] [DOI:10.1016/j.apm.2010.02.010]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.