Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1241-1252 | Back to browse issues page

XML Persian Abstract Print


1- Aerospace Engineering Department, Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Aerospace Engineering Department, Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran. , fsabet@srbiau.ac.ir
Abstract:   (4015 Views)

In the present paper, a new penalization method is proposed for implementation of the rigid surfaces on the Navier-Stokes equations in the vorticity-stream function formulation. In this method, a rigid body is considered as a region in the fluid flow, where the time is stopped. Therefore, by stopping the fluid particles, this region plays the role of a rigid body. In this regard, a new transformation is introduced and applied to the governing equations and a set of modified equations are obtained. Then, in the modified equations, the time dilation of the solid region is approached to infinity, while the time dilation of the fluid region remains In the article, the physical and mathematical properties of modified equations are investigated and satisfaction of the no-slip and no-penetration conditions are justified. Then, a suitable numerical algorithm is presented for solving the modified equations. In the proposed algorithm, the modified equation is time integrated via the Crank–Nicolson method, and the spatial discretization with the second-order finite differencing on a uniform Cartesian grid. The method is applied to the fluid flow around a square obstacle placed in a channel, the sudden flow perpendicular to a thin flat plate, and the flow around a circular cylinder. The results show that the no-slip and no-penetration conditions are satisfied accurately, while the flow fields are also high level of accuracy.
 

Full-Text [PDF 1485 kb]   (3267 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/06/5 | Accepted: 2018/08/7 | Published: 2019/05/1

References
1. Sabetghadam F, Soltani E, Ghasemi H. A fast immersed boundary fourier pseudo-spectral method for simulation of the incompressible flows. International Journal of Engineering. 2014;27(9):1457-1466. [Link]
2. Haeri S, Shrimpton JS. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. International Journal of Multiphase Flow. 2012;40:38-55. [Link] [DOI:10.1016/j.ijmultiphaseflow.2011.12.002]
3. Sabetghadam F, Shajari-Ghasemkheily A. Using the method of inverse problems in implementing the solid immersed boundaries on vorticity-streamfunction formulation of the incompressible viscous fluid flow. Modares Mechanical Engineering. 2017;17(10):397-404. [Persian] [Link]
4. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics. 2005;37:239-261. [Link] [DOI:10.1146/annurev.fluid.37.061903.175743]
5. Arquis E, Caltagirone JP. On the hydrodynamical boundary-conditions along a fluid layer porous-medium interface, Application to the case of free-convection. Comptes Rendus De l Academie Des Sciences Serie II. 1984;299(1):1-4. [French] [Link]
6. Angot P, Bruneau CH, Fabrie P. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik. 1999;81(4):497-520. [Link] [DOI:10.1007/s002110050401]
7. Carbou G, Fabrie P. Boundary layer for a penalization method for viscous incompressible flow. Advances in Differential Equations. 2003;8(12):1453-1480. [Link]
8. Schneider K. Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method. Computers and Fluids. 2005;34(10):1223-1238. [Link] [DOI:10.1016/j.compfluid.2004.09.006]
9. Kolomenskiy D, Schneider K. A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. Journal of Computational Physics. 2009;228(16):5687-5709. [Link] [DOI:10.1016/j.jcp.2009.04.026]
10. Ramière I, Angot P, Belliard M. A general fictitious domain method with immersed jumps and multilevel nested structured meshes. Journal of Computational Physics. 2007;225(2):1347-1387. [Link] [DOI:10.1016/j.jcp.2007.01.026]
11. Hejlesen MM, Koumoutsakos P, Leonard A, Walther JH. Iterative Brinkman penalization for remeshed vortex methods. Journal of Computational Physics. 2015;280:547-562. [Link] [DOI:10.1016/j.jcp.2014.09.029]
12. Kadoch B, Kolomenskiy D, Angot P, Schneider K. A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. Journal of Computational Physics. 2012;231(12):4365-4383. [Link] [DOI:10.1016/j.jcp.2012.01.036]
13. Engels T, Kolomenskiy D, Schneider K, Sesterhenn J. Numerical simulation of fluid-structure interaction with the volume penalization method. Journal of Computational Physics. 2015;281:96-115. [Link] [DOI:10.1016/j.jcp.2014.10.005]
14. Kolomenskiy D, Moffatt HK, Farge M, Schneider K. Two-and three-dimensional numerical simulations of the clap-fling-sweep of hovering insects. Journal of Fluids and Structures. 2011;27(5-6):784-791. [Link] [DOI:10.1016/j.jfluidstructs.2011.05.002]
15. Sabetghadam F. An analytical framework for imposition of a rigid immersed surface on the incompressible Navier-Stokes equations. Fluid Dynamics. 2018;1-37. [Link]
16. Sabetghadam F. Exact imposition of the regular rigid immersed surfaces on the solution of the incompressible Navier-Stokes equations [Internet]. Berlin: researchgate; 2015 [cited 2018 Jun 01]. Available from: http://yon.ir/dLBpy [Link]
17. Ren WW, Wu J, Shu C, Yang WM. A stream function-vorticity formulation-based immersed boundary method and its applications. International Journal for Numerical Methods in Fluids. 2012;70(5):627-645. [Link] [DOI:10.1002/fld.2705]
18. Sabetghadam F, Soltani E. Simulation of solid body motion in a Newtonian fluid using a vorticity-based pseudo-spectral immersed boundary method augmented by the radial basis functions. International Journal of Modern Physics C. 2015;26(5):1550053. [Link] [DOI:10.1142/S0129183115500539]
19. Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers and Fluids. 2004;33(3):375-404. [Link] [DOI:10.1016/S0045-7930(03)00058-6]
20. Trujillo J, Karniadakis GE. A penalty method for the vorticity-velocity formulation. Journal of Computational Physics. 1999;149(1):32-58. [Link] [DOI:10.1006/jcph.1998.6135]
21. Calhoun D. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 2002;176(2):231-275. [Link] [DOI:10.1006/jcph.2001.6970]
22. Napolitano M, Pascazio G, Quartapelle L. A review of vorticity conditions in the numerical solution of the ζ-ψ equations. Computers and Fluids. 1999;28(2):139-185. [Link] [DOI:10.1016/S0045-7930(98)00024-3]
23. Adlam JH. Computation of two-dimensional time-dependent natural convection in a cavity where there are internal bodies. Computers and Fluids. 1986;14(2):141-157. [Link] [DOI:10.1016/0045-7930(86)90006-X]
24. Sørensen JN, Nygreen PJ. Unsteady vorticity-streamfunction algorithm for external flows. Computers and Fluids. 2000;30(1):69-87. [Link] [DOI:10.1016/S0045-7930(00)00004-9]
25. Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics. 2002;183(1):83-116. [Link] [DOI:10.1006/jcph.2002.7166]
26. Okajima A. Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics. 1982;123:379-398. [Link] [DOI:10.1017/S0022112082003115]
27. Breuer M, Bernsdorf J, Zeiser T, Durst F. Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow. 2000;21(2):186-196. [Link] [DOI:10.1016/S0142-727X(99)00081-8]
28. Turki S, Abbassi H, Nasrallah SB. Effect of the blockage ratio on the flow in a channel with a built-in square cylinder. Computational Mechanics. 2003;33(1):22-29. [Link] [DOI:10.1007/s00466-003-0496-2]
29. Yoon DH, Yang KS, Choi CB. Flow past a square cylinder with an angle of incidence. Physics of Fluids. 2010;22(4):043603. [Link] [DOI:10.1063/1.3388857]
30. Orlanski I. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics. 1976;21(3):251-269. [Link] [DOI:10.1016/0021-9991(76)90023-1]
31. Koumoutsakos P, Shiels D. Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. Journal of Fluid Mechanics. 1996;328:177-227. [Link] [DOI:10.1017/S0022112096008695]
32. Dennis SCR, Qiang W, Coutanceau M, Launay JL. Viscous flow normal to a flat plate at moderate Reynolds numbers. Journal of Fluid Mechanics. 1993;248:605-635. [Link] [DOI:10.1017/S002211209300093X]
33. Jomaa Z, Macaskill C. The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. Journal of Computational Physics. 2005;202(2):488-506. [Link] [DOI:10.1016/j.jcp.2004.07.011]
34. Coutanceau M, Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics. 1977;79(2):231-256. https://doi.org/10.1017/S0022112077000147 [Link] [DOI:10.1017/S0022112077000135]
35. Coutanceau M, Bouard R. Experimental determination of the main feature of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. Journal of Fluid Mechanics. 1977;79(2):257-272. https://doi.org/10.1017/S0022112077000147 [Link] [DOI:10.1017/S0022112077000135]
36. Taira K, Colonius T. The immersed boundary method: A projection approach. Journal of Computational Physics. 2007;225(2):2118-2137. [Link] [DOI:10.1016/j.jcp.2007.03.005]
37. Linnick MN, Fasel HF. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. Journal of Computational Physics. 2005;204(1):157-192. [Link] [DOI:10.1016/j.jcp.2004.09.017]
38. Dennis SCR, Chang GZ. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid Mechanics. 1970;42(3):471-489. [Link] [DOI:10.1017/S0022112070001428]
39. Braza M, Chassaing P, Minh HH. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics. 1986;165:79-130. [Link] [DOI:10.1017/S0022112086003014]
40. Liu C, Zheng X, Sung CH. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics. 1998;139(1):35-57. [Link] [DOI:10.1006/jcph.1997.5859]
41. Roshko A. On the development of turbulent wakesfrom vortex streets. NACA Report. 1954:1-28. [Link]
42. Williamson CHK. Defining a universal and continuousStrouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder. The Physics of Fluids. 1988;31(10):2742-2744. [Link] [DOI:10.1063/1.866978]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.