1. Sabetghadam F, Soltani E, Ghasemi H. A fast immersed boundary fourier pseudo-spectral method for simulation of the incompressible flows. International Journal of Engineering. 2014;27(9):1457-1466. [
Link]
2. Haeri S, Shrimpton JS. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. International Journal of Multiphase Flow. 2012;40:38-55. [
Link] [
DOI:10.1016/j.ijmultiphaseflow.2011.12.002]
3. Sabetghadam F, Shajari-Ghasemkheily A. Using the method of inverse problems in implementing the solid immersed boundaries on vorticity-streamfunction formulation of the incompressible viscous fluid flow. Modares Mechanical Engineering. 2017;17(10):397-404. [Persian] [
Link]
4. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics. 2005;37:239-261. [
Link] [
DOI:10.1146/annurev.fluid.37.061903.175743]
5. Arquis E, Caltagirone JP. On the hydrodynamical boundary-conditions along a fluid layer porous-medium interface, Application to the case of free-convection. Comptes Rendus De l Academie Des Sciences Serie II. 1984;299(1):1-4. [French] [
Link]
6. Angot P, Bruneau CH, Fabrie P. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik. 1999;81(4):497-520. [
Link] [
DOI:10.1007/s002110050401]
7. Carbou G, Fabrie P. Boundary layer for a penalization method for viscous incompressible flow. Advances in Differential Equations. 2003;8(12):1453-1480. [
Link]
8. Schneider K. Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method. Computers and Fluids. 2005;34(10):1223-1238. [
Link] [
DOI:10.1016/j.compfluid.2004.09.006]
9. Kolomenskiy D, Schneider K. A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. Journal of Computational Physics. 2009;228(16):5687-5709. [
Link] [
DOI:10.1016/j.jcp.2009.04.026]
10. Ramière I, Angot P, Belliard M. A general fictitious domain method with immersed jumps and multilevel nested structured meshes. Journal of Computational Physics. 2007;225(2):1347-1387. [
Link] [
DOI:10.1016/j.jcp.2007.01.026]
11. Hejlesen MM, Koumoutsakos P, Leonard A, Walther JH. Iterative Brinkman penalization for remeshed vortex methods. Journal of Computational Physics. 2015;280:547-562. [
Link] [
DOI:10.1016/j.jcp.2014.09.029]
12. Kadoch B, Kolomenskiy D, Angot P, Schneider K. A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. Journal of Computational Physics. 2012;231(12):4365-4383. [
Link] [
DOI:10.1016/j.jcp.2012.01.036]
13. Engels T, Kolomenskiy D, Schneider K, Sesterhenn J. Numerical simulation of fluid-structure interaction with the volume penalization method. Journal of Computational Physics. 2015;281:96-115. [
Link] [
DOI:10.1016/j.jcp.2014.10.005]
14. Kolomenskiy D, Moffatt HK, Farge M, Schneider K. Two-and three-dimensional numerical simulations of the clap-fling-sweep of hovering insects. Journal of Fluids and Structures. 2011;27(5-6):784-791. [
Link] [
DOI:10.1016/j.jfluidstructs.2011.05.002]
15. Sabetghadam F. An analytical framework for imposition of a rigid immersed surface on the incompressible Navier-Stokes equations. Fluid Dynamics. 2018;1-37. [
Link]
16. Sabetghadam F. Exact imposition of the regular rigid immersed surfaces on the solution of the incompressible Navier-Stokes equations [Internet]. Berlin: researchgate; 2015 [cited 2018 Jun 01]. Available from: http://yon.ir/dLBpy [
Link]
17. Ren WW, Wu J, Shu C, Yang WM. A stream function-vorticity formulation-based immersed boundary method and its applications. International Journal for Numerical Methods in Fluids. 2012;70(5):627-645. [
Link] [
DOI:10.1002/fld.2705]
18. Sabetghadam F, Soltani E. Simulation of solid body motion in a Newtonian fluid using a vorticity-based pseudo-spectral immersed boundary method augmented by the radial basis functions. International Journal of Modern Physics C. 2015;26(5):1550053. [
Link] [
DOI:10.1142/S0129183115500539]
19. Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers and Fluids. 2004;33(3):375-404. [
Link] [
DOI:10.1016/S0045-7930(03)00058-6]
20. Trujillo J, Karniadakis GE. A penalty method for the vorticity-velocity formulation. Journal of Computational Physics. 1999;149(1):32-58. [
Link] [
DOI:10.1006/jcph.1998.6135]
21. Calhoun D. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 2002;176(2):231-275. [
Link] [
DOI:10.1006/jcph.2001.6970]
22. Napolitano M, Pascazio G, Quartapelle L. A review of vorticity conditions in the numerical solution of the ζ-ψ equations. Computers and Fluids. 1999;28(2):139-185. [
Link] [
DOI:10.1016/S0045-7930(98)00024-3]
23. Adlam JH. Computation of two-dimensional time-dependent natural convection in a cavity where there are internal bodies. Computers and Fluids. 1986;14(2):141-157. [
Link] [
DOI:10.1016/0045-7930(86)90006-X]
24. Sørensen JN, Nygreen PJ. Unsteady vorticity-streamfunction algorithm for external flows. Computers and Fluids. 2000;30(1):69-87. [
Link] [
DOI:10.1016/S0045-7930(00)00004-9]
25. Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics. 2002;183(1):83-116. [
Link] [
DOI:10.1006/jcph.2002.7166]
26. Okajima A. Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics. 1982;123:379-398. [
Link] [
DOI:10.1017/S0022112082003115]
27. Breuer M, Bernsdorf J, Zeiser T, Durst F. Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow. 2000;21(2):186-196. [
Link] [
DOI:10.1016/S0142-727X(99)00081-8]
28. Turki S, Abbassi H, Nasrallah SB. Effect of the blockage ratio on the flow in a channel with a built-in square cylinder. Computational Mechanics. 2003;33(1):22-29. [
Link] [
DOI:10.1007/s00466-003-0496-2]
29. Yoon DH, Yang KS, Choi CB. Flow past a square cylinder with an angle of incidence. Physics of Fluids. 2010;22(4):043603. [
Link] [
DOI:10.1063/1.3388857]
30. Orlanski I. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics. 1976;21(3):251-269. [
Link] [
DOI:10.1016/0021-9991(76)90023-1]
31. Koumoutsakos P, Shiels D. Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. Journal of Fluid Mechanics. 1996;328:177-227. [
Link] [
DOI:10.1017/S0022112096008695]
32. Dennis SCR, Qiang W, Coutanceau M, Launay JL. Viscous flow normal to a flat plate at moderate Reynolds numbers. Journal of Fluid Mechanics. 1993;248:605-635. [
Link] [
DOI:10.1017/S002211209300093X]
33. Jomaa Z, Macaskill C. The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. Journal of Computational Physics. 2005;202(2):488-506. [
Link] [
DOI:10.1016/j.jcp.2004.07.011]
34. Coutanceau M, Bouard R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics. 1977;79(2):231-256.
https://doi.org/10.1017/S0022112077000147 [
Link] [
DOI:10.1017/S0022112077000135]
35. Coutanceau M, Bouard R. Experimental determination of the main feature of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. Journal of Fluid Mechanics. 1977;79(2):257-272.
https://doi.org/10.1017/S0022112077000147 [
Link] [
DOI:10.1017/S0022112077000135]
36. Taira K, Colonius T. The immersed boundary method: A projection approach. Journal of Computational Physics. 2007;225(2):2118-2137. [
Link] [
DOI:10.1016/j.jcp.2007.03.005]
37. Linnick MN, Fasel HF. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. Journal of Computational Physics. 2005;204(1):157-192. [
Link] [
DOI:10.1016/j.jcp.2004.09.017]
38. Dennis SCR, Chang GZ. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid Mechanics. 1970;42(3):471-489. [
Link] [
DOI:10.1017/S0022112070001428]
39. Braza M, Chassaing P, Minh HH. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics. 1986;165:79-130. [
Link] [
DOI:10.1017/S0022112086003014]
40. Liu C, Zheng X, Sung CH. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics. 1998;139(1):35-57. [
Link] [
DOI:10.1006/jcph.1997.5859]
41. Roshko A. On the development of turbulent wakesfrom vortex streets. NACA Report. 1954:1-28. [
Link]
42. Williamson CHK. Defining a universal and continuousStrouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder. The Physics of Fluids. 1988;31(10):2742-2744. [
Link] [
DOI:10.1063/1.866978]