Volume 19, Issue 4 (2019)                   Modares Mechanical Engineering 2019, 19(4): 865-875 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nezamivand Chegini S, Bagheri A, Najafi F. A New Hybrid Intelligent Technique Based on Improving the Compensation Distance Evaluation Technique and Support Vector Machine for Bearing Fault Diagnosis. Modares Mechanical Engineering. 2019; 19 (4) :865-875
URL: http://mme.modares.ac.ir/article-15-22033-en.html
1- Dynamic, Control & Vibration Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran
2- Dynamic, Control & Vibration Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , bagheri@guilan.ac.ir
Full-Text [PDF 714 kb]   (718 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/06/13 | Accepted: 2018/11/18 | Published: 2019/04/6

1. Lei Y, Zuo MJ. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Measurement Science and Technology. 2009;20(12):125701. [Link] [DOI:10.1088/0957-0233/20/12/125701]
2. Jin Sh, Kim JS, Lee SK. Sensitive method for detecting tooth faults in gearboxes based on wavelet denoising and empirical mode decomposition. Journal of Mechanical Science and Technology. 2015;29(8):3165-3173. [Link] [DOI:10.1007/s12206-015-0715-8]
3. Li Y, Xu M, Wei Y, Huang W. An improvement EMD method based on the optimized rational Hermite interpolation approach and its application to gear fault diagnosis. Measurement. 2015;63:330-345. [Link] [DOI:10.1016/j.measurement.2014.12.021]
4. Guo T, Deng Z. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction of rolling bearing. Applied Acoustics. 2017;127:46-62. [Link] [DOI:10.1016/j.apacoust.2017.05.018]
5. Nguyen P, Kang M, Kim JM, Ahn BH, Ha JM, Choi BK. Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques. Expert Systems with Applications. 2015;42(22):9024-9032. [Link] [DOI:10.1016/j.eswa.2015.07.064]
6. Bordoloi DJ, Tiwari R. Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data. Measurement. 2014;55:1-14. [Link] [DOI:10.1016/j.measurement.2014.04.024]
7. Bordoloi DJ, Tiwari R. Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms. Mechanism and Machine Theory. 2014;73:49-60. [Link] [DOI:10.1016/j.mechmachtheory.2013.10.006]
8. Bordoloi DJ, Tiwari R. Optimisation of SVM methodology for multiple fault taxonomy of rolling bearings from acceleration records. In: Pennacchi P, editor. Proceedings of the 9th IFToMM international conference on rotor dynamics. Cham: Springer; 2015. [Link] [DOI:10.1007/978-3-319-06590-8_43]
9. Tabrizi A, Garibaldi L, Fasana A, Marchesiello S. Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica. 2015;50(3):865-874. [Link] [DOI:10.1007/s11012-014-9968-z]
10. Lei Y, He Z, Zi Y, Chen X. New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mechanical Systems and Signal Processing. 2008;22(2):419-435. [Link] [DOI:10.1016/j.ymssp.2007.07.013]
11. Yang BS, Han T, An JL. ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing. 2004;18(3):645-657. [Link] [DOI:10.1016/S0888-3270(03)00073-6]
12. Fatima S, Mohanty AR, Naikan VNA. Multiple fault classification using support vector machine in a machinery fault simulator. In: Sinha JK, editor. Vibration engineering and technology of machinery: Proceedings of VETOMAC X 2014, held at the University of Manchester, UK, September 9-11, 2014. Cham: Springer; 2015. pp. 1021-1031. [Link] [DOI:10.1007/978-3-319-09918-7_90]
13. Dong Sh, Sun D, Tang B, Gao Z, Yu W, Xia M. A fault diagnosis method for rotating machinery based on PCA and Morlet kernel SVM. Mathematical Problems in Engineering. 2014;2014(10):293878. [Link] [DOI:10.1155/2014/293878]
14. Yang CY, Wu TY. Diagnostics of gear deterioration using EEMD approach and PCA process. Measurement. 2015;61:75-87. [Link] [DOI:10.1016/j.measurement.2014.10.026]
15. Ziani R, Felkaoui A, Zegadi R. Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher's criterion. Journal of Intelligent Manufacturing. 2017;28(2):405-417. [Link] [DOI:10.1007/s10845-014-0987-3]
16. Zhang X, Zhang Q, Chen M, Sun Y, Qin X, Li H. A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method. Neurocomputing. 2018;275:2426-2439. [Link] [DOI:10.1016/j.neucom.2017.11.016]
17. Yin H, Qiao J, Fu P, Xia XY. Face feature selection with binary particle swarm optimization and support vector machine. Journal of Information Hiding and Multimedia Signal Processing. 2014;5(4):731-739. [Link]
18. Case Western Reserve University. Bearing data center [Internet]. Cleveland: Case Western Reserve University; 2016 [cited 2017 Sep 5]. Available from: http://csegroups.case.edu/bearingdatacenter/home [Link]
19. Tabrizi AA, Al-Bugharbee H, Trendafilova I, Garibaldi L. A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica. 2017;52(4-5):1201-1217. [Link] [DOI:10.1007/s11012-016-0451-x]
20. Rafiee J, Arvani F, Harifi A, Sadeghi MH. Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing. 2007;21(4):1746-1754. [Link] [DOI:10.1016/j.ymssp.2006.08.005]
21. Nezamivand Chegini S, Bagheri A, Najafi F. PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems. Applied Soft Computing. 2018;73:697-726. [Link] [DOI:10.1016/j.asoc.2018.09.019]

Add your comments about this article : Your username or Email:

Send email to the article author