1- Professor - University of Tabriz
Abstract: (5529 Views)
The fluid induced vibration in fluid conveying pipes can cause fatigue and failure in the system. Therefore, controlling these unwanted vibrations and suppressing the vibrations of the fluid conveying pipe is important. In this paper by considering the passive vibration absorber for the fluid conveying pipe, the influence of the vibration absorber parameters on the dynamic behavior of the system is investigated. The governing equations of motion are obtained via the Newton’s second law, and analytical solutions for the characteristic equation and mode shapes of the system are obtained through the power series method. After verifying the obtained results, the effect of the vibration absorber parameters and the fluid flow velocity on the vibration behavior of the fluid conveying pipe have been investigated. Results show that by increasing the absorber mass, the effect of absorber on decreasing the oscillations amplitude is diminished. At different fluid velocities, the oscillation amplitude of the system can be reduced considerably by specifying proper values of the absorber parameters. At velocities near the critical velocity, where the oscillation amplitude reaches a maximum value, using a suitable vibration absorber may reduce the maximum oscillations amplitude of the system by 98%. The method presented in current study can be easily generalized to design passive vibration absorber for fluid conveying pipes with different boundary conditions.
Article Type:
Research Article |
Subject:
Vibration Received: 2017/04/5 | Accepted: 2017/06/4 | Published: 2017/07/7