Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2589-2597 | Back to browse issues page

XML Persian Abstract Print

1- Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran , yhojjat@modares.ac.ir
Abstract:   (5650 Views)
In this paper nonlinear dynamic behavior of bending actuators of dielectric elastomer or Dielectric Elastomer Minimum Energy Structure (DEMES) is studied and the effects of viscoelasticity of dielectric film on system response are investigated. Considering hyper-elasticity and viscoelasticity of dielectric film, the equation of motion of the actuator is extracted using Euler-Lagrange method. The natural frequency of small amplitude oscillations around the equilibrium state is calculated by linearizing the original nonlinear equation and the effects of dielectric film pre-stretch and excitation amplitude on natural frequency is investigated. The numerical simulation of the nonlinear equation of motion for periodic excitation shows that the system possesses harmonic resonances as well as sub-harmonic and super-harmonic resonances. By increasing the damping ratio of the dielectric film, resonance frequency increases for all harmonics and their excitation amplitude decreases. The analytical results show that excitation amplitude of harmonic resonance in chaotic behavior changes to a quasi-alternate and then an alternative behavior by increasing damping ratio.
Full-Text [PDF 1362 kb]   (1978 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/06/24 | Accepted: 2019/05/21 | Published: 2019/11/21

1. 1- Kofod G, Paajanen M, Bauer S. Self-organized minimum-energy structures for dielectric elastomer actuators. Applied Physics A. 2006;85(2):141-143. [Link] [DOI:10.1007/s00339-006-3680-3]
2. Shintake J, Rosset S, Floreano D, Shea H. A soft robotic actuator using dielectric minimum energy structures. 2nd International Conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles, Potsdam (Berlin), Germany, May 29-30, 2012. Berlin: EuroEAP; 2012. [Link]
3. Kofod G, Wirges W, Paajanen M, Bauer S. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters. 2007;90(8):081916. [Link] [DOI:10.1063/1.2695785]
4. Lau GK, Heng KR, Ahmed AS, Shrestha M. Dielectric elastomer fingers for versatile grasping and nimble pinching. Applied Physics Letters. 2017;110(18):182906. [Link] [DOI:10.1063/1.4983036]
5. Nguyen CH, Alici G, Mutlu R. A compliant translational mechanism based on dielectric elastomer actuators. Journal of Mechanical Design. 2014;136(6):061009. [Link] [DOI:10.1115/1.4027167]
6. Araromi OA, Gavrilovich I, Shintake J, Rosset S, Richard M, Gass V, et al. Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Transactions on Mechatronics. 2015;20(1):438-446. [Link] [DOI:10.1109/TMECH.2014.2329367]
7. Zhao J, Niu J, McCoul D, Leng J, Pei Q. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment. Meccanica. 2015;50(11):2815-2824. [Link] [DOI:10.1007/s11012-015-0241-x]
8. Tang Y, Qin L, Li X, Chew CM, Zhu J. A frog-inspired swimming robot based on dielectric elastomer actuators. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 24-28 Sept. 2017, Vancouver, BC, Canada. Piscataway:IEEE; 2017. pp. 2403-2408. [Link] [DOI:10.1109/IROS.2017.8206054]
9. Li WB, Zhang WM, Zou HX, Peng ZK, Meng G. A novel variable stiffness mechanism for dielectric elastomer actuators. Smart Materials and Structures. 2017;26(8):085033. [Link] [DOI:10.1088/1361-665X/aa76ba]
10. Li WB, Zhang WM, Zou HX, Peng Z, Meng G. A fast rolling soft robot driven by dielectric elastomer. IEEE/ASME Transactions on Mechatronics. 2018;23(4):1630-1640. [Link] [DOI:10.1109/TMECH.2018.2840688]
11. Henke EFM, Wilson KE, Anderson IA. Entirely soft dielectric elastomer robots. Proceeding of SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD), 10 May 2017, Portland, Oregon, United States. Washington: SPIE; 2017. p. 101631N. [Link] [DOI:10.1117/12.2260361]
12. Petralia MT, Wood RJ. Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems , 18-22 Oct. 2010 , Taipei, Taiwan. Piscataway:IEEE; 2010. pp. 2357-2363. [Link] [DOI:10.1109/IROS.2010.5652506]
13. Siu S, Rhode-Barbarigos L, Wagner S, Adriaenssens S. Dynamic relaxation study and experimental verification of dielectric-elastomer minimum-energy structures. Applied Physics Letters. 2013;103:171906. [Link] [DOI:10.1063/1.4826884]
14. Liu F, Zhang Y, Zhang L, Geng L, Wang Y, Ni N, et al. Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimum-energy structures. Applied Physics A. 2016;122:323. [Link] [DOI:10.1007/s00339-016-9858-4]
15. Zhu J, Cai S, Suo Z. Nonlinear oscillation of a dielectric elastomer balloon. Polymer International. 2010;59(3):378-383. [Link] [DOI:10.1002/pi.2767]
16. Zhu J, Cai S, Suo Z. Resonant behavior of a membrane of a dielectric elastomer. International Journal of Solids and Structures. 2010;47(24):3254-3262. [Link] [DOI:10.1016/j.ijsolstr.2010.08.008]
17. Li T, Qu S, Yang W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures. 2012;49(26):3754-3761. [Link] [DOI:10.1016/j.ijsolstr.2012.08.006]
18. Sheng J, Chen H, Li B, Wang Y. Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Materials and Structures. 2014;23(4). [Link] [DOI:10.1088/0964-1726/23/4/045010]
19. Zhang J, Chen H, Li B, McCoul D, Pei Q. Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter. 2015;11:7483-7493. [Link] [DOI:10.1039/C5SM01436K]
20. Wang F, Lu T, Wang TJ. Nonlinear vibration of dielectric elastomer incorporating strain stiffening. International Journal of Solids and Structures. 2016;87:70-80. [Link] [DOI:10.1016/j.ijsolstr.2016.02.030]
21. O'Brien B, McKay T, Calius E, Xie S, Anderson I. Finite element modelling of dielectric elastomer minimum energy structures. Applied Physics A. 2009;94(3):507-514. [Link] [DOI:10.1007/s00339-008-4946-8]
22. Zhao J, Niu J, McCoul D, Ren Z, Pei Q. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Applied Physics Letters. 2015;106(13):133504. [Link] [DOI:10.1063/1.4915108]
23. Zhao J, Wang S, Xing Z, McCoul D, Niu J, Huang B, et al. Equivalent dynamic model of DEMES rotary joint. Smart Materials and structures. 2016;25(7). [Link] [DOI:10.1088/0964-1726/25/7/075025]
24. Zurlo G, Destrade M, DeTommasi D, Puglisi G. Catastrophic thinning of dielectric elastomers. Physical Review Letters. 2017;118:078001. [Link] [DOI:10.1103/PhysRevLett.118.078001]
25. Suo Z. Theory of dielectric elastomers. Acta Mechanica Solida Sinica. 2010;23(6):549-578. [Link] [DOI:10.1016/S0894-9166(11)60004-9]
26. Leng J, Liu L, Liu Y, Yu K, Sun S. Electromechanical stability of dielectric elastomer. Applied Physics Letters. 2009;94:211901. [Link] [DOI:10.1063/1.3138153]
27. Dubois P, Rosset S, Niklaus M, Dadras M, Shea H. Voltage control of the resonance frequency of dielectric electroactive polymer (DEAP) membranes. Journal of Microelectromechanical Systems. 2008;17(5):1072-1081. [Link] [DOI:10.1109/JMEMS.2008.927741]
28. Chen F, Zhu J, Wang MY. Dynamic electromechanical instability of a dielectric elastomer balloon. EPL (Europhysics Letters). 2015;112(4). [Link] [DOI:10.1209/0295-5075/112/47003]
29. Nayfeh AH, Mook DT. Nonlinear oscillations. Hoboken: John Wiley & Sons; 2008. [Link]
30. Xu BX, Mueller R, Theis A, Klassen M, Gross D. Dynamic analysis of dielectric elastomer actuators. Applied Physics Letters. 2012;100(11):112903. [Link] [DOI:10.1063/1.3694267]
31. Manevitch L. New approach to beating phenomenon in coupled nonlinear oscillatory chains. Archive of Applied Mechanics. 2007;77(5):301-312. [Link] [DOI:10.1007/s00419-006-0081-1]
32. Strogatz SH. Nonlinear dynamics and chaos. 2nd Edition Boca Raton: CRC Press; 2018. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.