Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1845-1854 | Back to browse issues page

XML Persian Abstract Print

1- Manufacturing Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
2- Manufacturing Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran , amini.s@kashanu.ac.ir
Abstract:   (7994 Views)
Since the invention of ultrasonic vibration assisted turning, this process has been widely considered and investigated. The reason for this consideration is the unique features of this process, which include reducing machining forces, reducing wear, and friction, increasing the tool life, creating periodic cutting conditions, increasing the machinability of difficult-to-cut material, increasing the surface quality, creating a hierarchical structure (micro-nano textures) on the surface and so on. Different methods have hitherto been used to apply ultrasonic vibration to the tip of the tool during the turning process. In this research, a unique horn has been designed and constructed to convert linear vibrations of piezoelectrics to three-dimensional vibrations (longitudinal vibrations along the z axis, bending vibrations around the x axis, and bending vibrations around the y axis). The advantage of this ultrasonic machining tool compared with other similar tools is that in most other tools, it is only possible to apply one-dimensional (linear) and two-dimensional (elliptical) vibrations, while this tool can create three-dimensional vibrations. Additionally, since the nature of the designed horn can lead to the creation of three-dimensional vibrations, there is no need for piezoelectric half-rings (which are stimulated by 180 phase difference) to create bending vibrations around the x and y axes. The reduction of costs as well as simplicity of applying three-dimensional vibrations in this new method can play an important role in industrializing the process of three-dimensional ultrasonic vibration assisted turning.
Full-Text [PDF 1692 kb]   (3141 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/06/27 | Accepted: 2019/01/8 | Published: 2019/08/12

1. 1- Babitsky VI, Kalashnikov AN, Meadows A, Wijesundara AAHP. Ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology. 2003;132(1-3):157-167. [Link] [DOI:10.1016/S0924-0136(02)00844-0]
2. Babitsky VI, Mitrofanov AV, Silberschmidt VV. Ultrasonically assisted turning of aviation materials: Simulations and experimental study. Ultrasonics. 2004;42(1-9):81-86. [Link] [DOI:10.1016/j.ultras.2004.02.001]
3. Nath C, Rahman M, Andrew SSK. A study on ultrasonic vibration cutting of low alloy steel. Journal of Materials Processing Technology. 2007;192-193:159-165. [Link] [DOI:10.1016/j.jmatprotec.2007.04.047]
4. Amini S, Nouri Hosseinabadi H, Sajjady SA. Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance. Applied Surface Science. 2016;390:633-648. [Link] [DOI:10.1016/j.apsusc.2016.07.064]
5. Lu Y, Guo P, Pei P, Ehmann KF. Experimental studies of wettability control on cylindrical surfaces by elliptical vibration texturing. The International Journal of Advanced Manufacturing Technology. 2015;76(9-12):1807-1817. [Link] [DOI:10.1007/s00170-014-6384-4]
6. Guo P, Ehmann KF. An analysis of the surface generation mechanics of the elliptical vibration texturing process. International Journal of Machine Tools and Manufacture. 2013;64:85-95. [Link] [DOI:10.1016/j.ijmachtools.2012.08.003]
7. Vaikuntanathan V, Kannan R, Sivakumar D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2010;369(1-3):65-74. [Link] [DOI:10.1016/j.colsurfa.2010.07.034]
8. Gropper D, Wang L, Harvey TJ. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribology International. 2016;94:509-529. [Link] [DOI:10.1016/j.triboint.2015.10.009]
9. Costa HL, Hutchings IM. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribology International. 2007;40(8):1227-1238. [Link] [DOI:10.1016/j.triboint.2007.01.014]
10. Janssen A, Pinedo B, Igartua A, Liiskmann G, Sexton L. Study on friction and wear reducing surface micro-structures for a positive displacement pump handling highly abrasive shale oil. Tribology International. 2017;107:1-9. [Link] [DOI:10.1016/j.triboint.2016.11.017]
11. Segu DZ, Hwang P. Friction control by multi-shape textured surface under pin-on-disc test. Tribology International. 2015;91:111-117. [Link] [DOI:10.1016/j.triboint.2015.06.028]
12. Gu C, Meng X, Xie Y, Yang Y. Effects of surface texturing on ring/liner friction under starved lubrication. Tribology International. 2016;94:591-605. [Link] [DOI:10.1016/j.triboint.2015.10.024]
13. Henari F, Blau W. Excimer-laser surface treatment of metals for improved adhesion. Applied Optics. 1995;34(3):581-584. [Link] [DOI:10.1364/AO.34.000581]
14. Fu X, He X. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates. Applied Surface Science. 2008;255(5 Pt 1):1776-1781. [Link] [DOI:10.1016/j.apsusc.2008.06.018]
15. Kim J, Sim SO, Park HW. Fabrication of durable hydrophobic micropatterns on stainless steel using a hybrid irradiation process. Surface and Coatings Technology. 2016;302:535-542. [Link] [DOI:10.1016/j.surfcoat.2016.06.051]
16. Cortese B, Riehle MO, D'Amone S, Gigli G. Influence of variable substrate geometry on wettability and cellular responses. Journal of Colloid and Interface Science. 2013;394:582-589. [Link] [DOI:10.1016/j.jcis.2012.11.051]
17. Hsieh CC, Yao SC. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces. International Journal of Heat and Mass Transfer. 2006;49(5-6):962-974. [Link] [DOI:10.1016/j.ijheatmasstransfer.2005.09.013]
18. Ingram AL, Parker AR. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philosophical Transactions of the Royal Society of London Series B Biological Sciences. 2008;363(1502):2465-2480. [Link] [DOI:10.1098/rstb.2007.2258]
19. Park SG, Moon JH, Lee SK, Shim J, Yang SM. Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials. Langmuir. 2010;26(3):1468-1472. [Link] [DOI:10.1021/la9035826]
20. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA. Advances in engineered surfaces for functional performance. CIRP Annals. 2008;57(2):750-769. [Link] [DOI:10.1016/j.cirp.2008.09.003]
21. Evans CJ, Bryan JB. "Structured", "textured" or "engineered" surfaces. CIRP Annals. 1999;48(2):541-556. [Link] [DOI:10.1016/S0007-8506(07)63233-8]
22. Moriwaki T, Shamoto E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Annals. 1991;40(1):559-562. [Link] [DOI:10.1016/S0007-8506(07)62053-8]
23. Moriwaki T, Shamoto E. Ultrasonic elliptical vibration cutting. CIRP Annals. 1995;44(1):31-34. [Link] [DOI:10.1016/S0007-8506(07)62269-0]
24. Li X, Zhang D. Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting. Journal of Materials Processing Technology. 2006;180(1-3):91-95. [Link] [DOI:10.1016/j.jmatprotec.2006.05.007]
25. Kuribayashi Kurosawa M, Kodaira O, Tsuchitoi Y, Higuchi T. Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1998;45(5):1188-1195. [Link] [DOI:10.1109/58.726442]
26. Guo P, Ehmann KF. Development of a new vibrator for elliptical vibration texturing. ASME 2011 International Manufacturing Science and Engineering Conference, June 13-17, 2011, Corvallis, Oregon, USA. New York: ASME; 2011. p. 373-380. [Link] [DOI:10.1115/MSEC2011-50131]
27. Kim GD, Loh BG. An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics. Journal of Materials Processing Technology. 2007;190(1-3):181-188. [Link] [DOI:10.1016/j.jmatprotec.2007.02.047]
28. Yin Z, Fu Y, Xu J, Li H, Cao Z, Chen Y. A novel single driven ultrasonic elliptical vibration cutting device. The International Journal of Advanced Manufacturing Technology. 2017;90(9-12):3289-3300. [Link] [DOI:10.1007/s00170-016-9641-x]
29. Sajjady SA, Nouri Hosseinabadi H, Amini S, Nosouhi R. Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Materials & Design. 2016;93:311-323. [Link] [DOI:10.1016/j.matdes.2015.12.119]
30. Nouri Hosseinabadi H, Sajjady SA, Amini S. Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning. The International Journal of Advanced Manufacturing Technology. 2018;96(5-8):2825-2839. [Link] [DOI:10.1007/s00170-018-1580-2]
31. Astashev VK, Babitsky VI. Ultrasonic processes and machines: Dynamics, control and applications. Berlin/Heidelberg: Springer Science & Business Media; 2007. [Link]
32. Lotfi M, Amini S. Effect of ultrasonic vibration on frictional behavior of tool-chip interface: Finite element analysis and experimental study. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 2018;232(7):1212-1220. [Link] [DOI:10.1177/0954405416666895]
33. Lotfi M, Amini S. FE simulation of linear and elliptical ultrasonic vibrations in turning of Inconel 718. Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering. 2018;232(4):438-448. [Link] [DOI:10.1177/0954408917715533]
34. Rao SS. Mechanical vibrations. 4th Edition. Upper Saddle River: Pearson Prentice Hall; 2004. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.