1. Smith R. Chemical process design and integration. 2nd Edition. Hoboken: John Wiley & Sons; 2016. [
Link]
2. Floudas CA. Nonlinear and mixed-integer optimization: Fundamentals and applications. Oxford: Oxford University Press; 1995. [
Link]
3. Shenoy UV. Heat exchanger network synthesis: Process optimization by energy and resource analysis. Houston: Gulf Publishing Company; 1995. [
Link]
4. Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks. Chemical Engineering Science. 1983;38(5):745-763. [
Link] [
DOI:10.1016/0009-2509(83)80185-7]
5. Linnhoff B, Mason DR, Wardle I. Understanding heat exchanger networks. Computers and Chemical Engineering. 1979;3(1-4):295-302. [
Link] [
DOI:10.1016/0098-1354(79)80049-6]
6. Linnhoff B, Institution of Chemical Engineers (Great Britain). User guide on process integration for the efficient use of energy. Oxford: Pergamon Press; 1982. [
Link]
7. Linnhoff B, Turner JA. Heat-recovery networks: New insights yield big savings. Chemical Engineering. 1981;88(22):56-70. [
Link]
8. Floudas CA, Ciric AR, Grossmann IE. Automatic synthesis of optimum heat exchanger network configurations. AIChE Journal. 1986;32(2):276-290. [
Link] [
DOI:10.1002/aic.690320215]
9. Grossmann IE, Sargent RWH. Optimum design of heat exchanger networks. Computers and Chemical Engineering. 1978;2(1):1-7. [
Link] [
DOI:10.1016/0098-1354(78)80001-5]
10. Papoulias SA, Grossmann IE. A structural optimization approach in process synthesis-II: Heat recovery networks. Computers and Chemical Engineering. 1983;7(6):707-721. [
Link] [
DOI:10.1016/0098-1354(83)85023-6]
11. Lewin DR. A generalized method for HEN synthesis using stochastic optimization-II.: The synthesis of cost-optimal networks. Computers and Chemical Engineering. 1998;22(10):1387-1405.
https://doi.org/10.1016/S0098-1354(98)00220-8 [
Link] [
DOI:10.1016/S0098-1354(98)00221-X]
12. Lewin DR, Wang H, Shalev O. A generalized method for HEN synthesis using stochastic optimization-I. General framework and MER optimal synthesis. Computers and Chemical Engineering. 1998;22(10):1503-1513. [
Link] [
DOI:10.1016/S0098-1354(98)00220-8]
13. Yu H, Fang H, Yao P, Yuan Y. A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Computers and Chemical Engineering. 2000;24(8):2023-2035. [
Link] [
DOI:10.1016/S0098-1354(00)00601-3]
14. Wei GF, Yao PJ, Luo X, Wilfried R. Study on multi-stream heat exchanger network synthesis with parallel genetic/simulated annealing algorithm. Chinese Journal of Chemical Engineering. 2004;12(1):66-77. [
Link]
15. Wei GF, Yao PJ, Luo X, Roetzel W. A parallel genetic algorithm/simulated annealing algorithm for synthesizing multistream heat exchanger networks. Journal of the Chinese Institute of Chemical Engineers. 2004;35(3):285-297. [
Link]
16. Lin B, Miller DC. Solving heat exchanger network synthesis problems with Tabu Search. Computers and Chemical Engineering. 2004;28(8):1451-1464. [
Link] [
DOI:10.1016/j.compchemeng.2003.10.004]
17. Rezaei E, Shafiei S. Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods. Computers and Chemical Engineering. 2009;33(9):1451-1459. [
Link] [
DOI:10.1016/j.compchemeng.2009.03.009]
18. Polly GT, Panjeh Shahi MH. Interfacing heat exchanger network synthesis and detailed heat exchanger design. Transactions of the Institute of Chemical Engineers. 1991;69(Part A):445-457. [
Link]
19. Zhu XX, Nie XR. Pressure drop considerations for heat exchanger network grassroots design. Computers and Chemical Engineering. 2002;26(12):1661-1676. [
Link] [
DOI:10.1016/S0098-1354(02)00149-7]
20. Panjeh Shahi MH, Khoshgard A. Design of heat exchanger networks with different heat transfer coefficients according to the Allowable pressure drop flows: A new method of targeting. Journal of Faculty of Engineering, University of Tehran. 2005;38(5):581-592. [Persian] [
Link]
21. Frausto-Hernández S, Rico-Ramırez V, Jiménez-Gutiérrez A, Hernández-Castro S. MINLP synthesis of heat exchanger networks considering pressure drop effects. Computers and Chemical Engineering. 2003;27(8-9):1143-1152. [
Link] [
DOI:10.1016/S0098-1354(03)00042-5]
22. Soltani H, Shafiei S. Heat exchanger network synthesis with considering pressure drop by coupling genetic algorithm with Linear Programming method. The 7th International Chemical Engineering Congress (IChEC), 21-24 November, 2011, Kish, Iran. Tehran: Iranian Association of Chemical Engineers; 2011. [Persian] [
Link]
23. Panjeh Shahi MH, Ali Mandegari A, Fallahi HR, Rezaei Dizjikan H. Optimal distribution of pressure drop in PDM designed heat exchanger networks. Iranian Journal of Chemistry and Chemical Engineering. 2005;24(2):1-8. [Persian] [
Link]
24. Soltani H, Shafiei S. Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods. Energy. 2011;36(5):2381-2391. [
Link] [
DOI:10.1016/j.energy.2011.01.017]
25. Akpomiemie MO, Smith R. Pressure drop considerations with heat transfer enhancement in heat exchanger network retrofit. Applied Thermal Engineering. 2017;116:695-708. [
Link] [
DOI:10.1016/j.applthermaleng.2017.01.075]
26. Polly GT, Panjeh Shahi MH, Jegede FO. Pressure drop considerations in the retrofit of heat exchanger networks. Transactions of the Institute of Chemical Engineer. 1990;68(Part A):211-220. [
Link]