Volume 20, Issue 2 (2020)                   Modares Mechanical Engineering 2020, 20(2): 311-320 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghalehbandi S, Fallahi A, Hosseini Tudeshki H. Predicting Stress-Strain Behavior of ECAPed 7075 Al Alloy Using Micro-Indentation and Micro-Structural Modeling. Modares Mechanical Engineering. 2020; 20 (2) :311-320
URL: http://journals.modares.ac.ir/article-15-22695-en.html
1- Industrial Engineering Department, Industrial & Chemical Engineering Faculty, Mazandaran University of Science and Technology, Behshahr, Iran , ghalehbandi@mazust.ac.ir
2- Mechanical Engineering Department, Mechanical Engineering Faculty, Amirkabir University, Tehran, Iran
3- Aerospace Engineering Department, Aerospace Engineering Faculty, Amirkabir University, Tehran, Iran
Abstract:   (791 Views)
The focus of this paper is to investigate the possibility of consideration of grains and grain boundaries and their elastic-plastic behavior to predict the stress-strain behavior of ECAPed 7075 Al alloy using a finite element micromechanical approach. For this purpose equal channel angular pressing is performed on the alloy and hardness and tensile tests were performed in the macro mode as well as the micro-indentation test on distinct areas of microstructure. Mathematical relations were obtained for the correlate the hardness and static strength properties of the alloy using the obtained data from hardness and tensile tests. In addition to the mathematical relations, backward simulation of the micro-indentation process has been used in the Abaqus finite element software to convert the hardness in the grain and its boundary to stress-strain curves. The elastic-plastic behavior of the phases has been used in microstructural modeling. Modeling of the strain test has been performed in the finite element software for the microstructures using the microstructural image. The predicted stress-strain behavior from microstructural modeling has been compared with experimental results. 
Full-Text [PDF 1116 kb]   (147 Downloads)    

Received: 2018/07/7 | Accepted: 2019/05/19 | Published: 2020/02/1

1. Figueiredo RB, De Barbosa ER, Zhao X, Yang X, Liu X, Cetlin PR, et al. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Material Science and Engineering A. 2014;619:312-318. [Link] [DOI:10.1016/j.msea.2014.09.099]
2. Sanusi KO, Makinde OD, Oliver GJ. Equal channel angular pressing technique for the formation of ultra-fine grained structures. South African Journal of Science. 2012;108(9-10). [Link] [DOI:10.4102/sajs.v108i11/12.212]
3. Segal VM. Materials processing by simple shear. Material Science and Engineering A. 1995;197(2):157-164. [Link] [DOI:10.1016/0921-5093(95)09705-8]
4. Valiev R, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Material Science. 2006;51(7):881-981. [Link] [DOI:10.1016/j.pmatsci.2006.02.003]
5. Lemaitre J, Desmorat R. Engineering damage mechanics-ductile, creep, fatigue and brittle failures. Berlin: Springer; 2005. [Link]
6. Gleiter H. Nanostructures materials: State of the art and perspectives. Nanostructured Materials. 1995;6(1-4):3-14. [Link] [DOI:10.1016/0965-9773(95)00025-9]
7. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Principle of equal-channel angular pressing for the processing of ultra fine grained materials. Scripta Materialia. 1996;35(2):143-146. [Link] [DOI:10.1016/1359-6462(96)00107-8]
8. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia. 2004;52(15):4589-4599. [Link] [DOI:10.1016/j.actamat.2004.06.017]
9. Kumar SR, Gudimetla K, Venkatachalam P, Ravisankar B, Jayasankar K. Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing. Material Science and Engineering A. 2012;533:50-54. [Link] [DOI:10.1016/j.msea.2011.11.031]
10. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG. Achieving high strength and high ductility in precipitation hardened alloys. Advanced Materials. 2005;17(13):1599-1602. [Link] [DOI:10.1002/adma.200500069]
11. Darban H, Mohammadi B, Djavanroodi F. Effect of equal channel angular pressing on fracture toughness of Al-7075. Engineering Failure Analysis. 2016;65:1-10. [Link] [DOI:10.1016/j.engfailanal.2016.03.010]
12. Cai X, Yang X, Zhou P. Dependence of vickers microhardness on applied load in indium. Material Science Letters. 1997;16(9):741-742. [Link] [DOI:10.1023/A:1018533131255]
13. Shinohara K. Relationship between work-hardening exponent and load dependence of vickers hardness in copper. Material Science. 1993;28(19):5325-5329. [Link] [DOI:10.1007/BF00570084]
14. Rogacheva EI, Tavrina TV, Galkin SN. Load-dependent microhardness of CulnSe2. Inorganic Materials. 2000;36(2):123-126. [Link] [DOI:10.1007/BF02758010]
15. Tiryakioglu M. On the relationship between Vickers hardness and yield stress in Al-Zn-Mg-Cu Alloys. Material Science and Engineering: A. 2015;633:17-19. [Link] [DOI:10.1016/j.msea.2015.02.073]
16. Tabor D. The hardness of metals. London: Oxford University Press; 1951. [Link]
17. Bruet BJF, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nature materials. 2008;7:748-756. [Link] [DOI:10.1038/nmat2231]

Add your comments about this article : Your username or Email:

Send email to the article author