Volume 19, Issue 6 (June 2019)                   Modares Mechanical Engineering 2019, 19(6): 1439-1445 | Back to browse issues page

XML Persian Abstract Print

1- Metallurgical Engineering Department, Iran university of Science & Technology, Tehran, Iran
2- Metallurgical Engineering Department, Iran university of Science & Technology, Tehran, Iran , arabi@iust.ac.ir
3- Metallurgical Engineering Department, Hamedan University of Technology, Hamedan, Iran
4- Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
Abstract:   (3993 Views)
In this study, a constitutive equation based on the hyperbolic sine Arrhenius-type model has been developed to describe the hot deformation behavior of a Fe-17Cr-7Ni (17-7PH), semi-austenitic precipitation hardening stainless steel. The experimental data obtained from hot compression tests at 950-1100°C and strain rates of 0.001-1 s-1 establish the constitutive equation. The material constants of α, A, n, and Q were calculated, using the developed model related to the applied strain by 6 The average error (AARE) and correlation coefficient (R) were used to evaluate the accuracy of the constitutive equation. The average values obtained for AARE and R were 5.17% and 0.9904, respectively. The results indicated that the developed constitutive equation can predict the flow stress behavior of the studied alloy with good accuracy over a wide range of experimental conditions. The model can be, therefore, recommended for analysis of hot deformation mechanism and microstructure evolution.
Full-Text [PDF 883 kb]   (2812 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/08/15 | Accepted: 2018/11/3 | Published: 2019/06/1

1. 1- Yue Ch, Zhang L, Liao Sh, Gao H. Mathematical models for predicting the austenite grain size in hot working of GCr15 steel. Computational Materials Science. 2009;45(2):462-466. [Link] [DOI:10.1016/j.commatsci.2008.11.003]
2. Khamei AA, Dehghani K. Modeling the hot-deformation behavior of Ni60 wt%-Ti40 wt% intermetallic alloy. Journal of Alloys and Compounds. 2010;490(1-2):377-381. [Link] [DOI:10.1016/j.jallcom.2009.09.187]
3. Samantaray D, Mandal S, Bhaduri AK. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel. Materials and Design. 2010;31(2):981-984. [Link] [DOI:10.1016/j.matdes.2009.08.012]
4. Dehghani K, Khamei AA. Hot deformation behavior of 60Nitinol (Ni60 wt%-Ti40 wt%) alloy: Experimental and computational studies. Materials Science and Engineering A. 2010;527(3):684-690. [Link] [DOI:10.1016/j.msea.2009.08.059]
5. Lin YC, Chen MS, Zhong J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel. Journal of Materials Processing Technology. 2008;205(1-3):308-315. [Link] [DOI:10.1016/j.jmatprotec.2007.11.113]
6. Lin YC, Xia YC, Chen XM, Chen MS. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Computational Materials Science. 2010;50(1):227-233. [Link] [DOI:10.1016/j.commatsci.2010.08.003]
7. Sellars CM, Tegart WJM. Hot workability. International Metallurgical Reviews. 1972;17(1):1-24. https://doi.org/10.1179/imtlr.1972.17.1.1 [Link] [DOI:10.1179/095066072790137765]
8. Sellars CM, Mc Tegart WJ. On the mechanism of hot deformation. Acta Metallurgica. 1966;14(9):1136-1138. [Link] [DOI:10.1016/0001-6160(66)90207-0]
9. Tan YB, Ma YH, Zhao F. Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy. Journal of Alloys and Compounds. 2018;741:85-96. [Link] [DOI:10.1016/j.jallcom.2017.12.265]
10. Wang Y, Peng J, Zhong L, Pan F. Modeling and application of constitutive model considering the compensation of strain during hot deformation. Journal of Alloys and Compounds. 2016;681:455-470. [Link] [DOI:10.1016/j.jallcom.2016.04.153]
11. Zhou L, Cui C, Wang QZ, Li C, Xiao BL, Ma ZY. Constitutive equation and model validation for a 31 vol.% B4Cp/6061Al composite during hot compression. Journal of Materials Science and Technology. 2018;34(10):1730-1738. [Link] [DOI:10.1016/j.jmst.2018.02.001]
12. Zhong L, Gao W, Feng Z, Lu Z, Mao G. Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy. Journal of Materials Research. 2018;33(8):912-922. [Link] [DOI:10.1557/jmr.2017.466]
13. Mirzadeh H, Najafizadeh A. Flow stress prediction at hot working conditions. Materials Science and Engineering A. 2010;527(4-5):1160-1164. [Link] [DOI:10.1016/j.msea.2009.09.060]
14. Spigarelli S, El Mehtedi M, Ricci P, Mapelli C. Constitutive equations for prediction of the flow behaviour of duplex stainless steels. Materials Science and Engineering A. 2010;527(16-17):4218-4228. [Link] [DOI:10.1016/j.msea.2010.03.029]
15. Jiang H, Yang L, Dong J, Zhang M, Yao Z. The recrystallization model and microstructure prediction of alloy 690 during hot deformation. Materials and Design. 2016;104:162-173. [Link] [DOI:10.1016/j.matdes.2016.05.033]
16. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. New York: Elsevier; 2012. [Link]
17. Verlinden B, Driver J, Samajdar I, Doherty RD. Thermo-mechanical processing of metallic materials. Volume 11. New York: Elsevier; 2007. [Link]
18. Richardson GJ, Hawkins DN, Sellars CM. Worked examples in metalworking. London: The Institute of Metals; 1985. [Link]
19. Cabrera JM, Mateo A, Llanes L, Prado JM, Anglada M. Hot deformation of duplex stainless steels. Journal of Materials Processing Technology. 2003;143-144:321-325. [Link] [DOI:10.1016/S0924-0136(03)00434-5]
20. Wang HS, Kang J, Dou WX, Zhang YX, Yuan G, Cao GM, et al. Microstructure and mechanical properties of hot-rolled and heat-treated TRIP steel with direct quenching process. Materials Science and Engineering A. 2017;702:350-359. [Link] [DOI:10.1016/j.msea.2017.07.039]
21. Zhang J, Di H, Wang X, Cao Y, Zhang J, Ma T. Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain. Materials and Design. 2013;44:354-364. [Link] [DOI:10.1016/j.matdes.2012.08.004]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.