Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1959-1969 | Back to browse issues page

XML Persian Abstract Print

1- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
2- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran , mfakoor@ut.ac.ir
3- Satellite Research Institute, Iranian Space Research Center, Tehran, Iran
Abstract:   (3888 Views)
In this paper, in order to minimize the required power of satellite thermal control subsystem, considering known geometric model and the orbital parameters and conditions, the optimal layout design of the satellite subsystems will be performed based on thermal and attitude control constraints. Since all of the satellite subsystems can act only in a certain temperature range, here, by considering the thermal dissipations of each subsystem and incoming thermal loads to each satellite faces in different orbital conditions, by optimally layout of components and sub-systems of the satellite, we will arrive to appropriate configuration plan. The constraints of the thermal subsystem should be satisfied by considering the temperature distribution within the satellite as far as possible. Finally, given that the main purpose of this layout is to provide thermal power, in addition to satisfication of the power budget system constraint, the power of the thermal control subsystem has been reduced by 66%. The superiority of this method is that by following the resulting layout, we obtain a model that needs a thermal control subsystem with less complexity and limited power. Consequently, in addition to decreasing the mass of the satellite, reliability will also be increased. Considering the importance of satellite stability, the layout algorithm and optimization are defined in such a way that the attitude control requirements are observed with the thermal requirements in this layout.
Full-Text [PDF 1143 kb]   (2748 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/08/23 | Accepted: 2019/01/26 | Published: 2019/08/12

1. Corpino S, Caldera M, Nichele F, Masoero M, Viola N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica. 2015;115:247-261. [Link] [DOI:10.1016/j.actaastro.2015.05.012]
2. Mansour Dehghan M, Ebrahimi M, Negaresh O. Small satellite thermal control sub-system conceptual design optimization methodology. Modares Mechanical Engineering. 2016;16(8):218-228. [Persian] [Link]
3. Yang Y, Zhang D, Li A. Layout optimization of spacecraft-based solar array under partially shaded conditions. Solar Energy. 2018;167:84-94. [Link] [DOI:10.1016/j.solener.2018.03.080]
4. Qin Z, Liang YG, Zhou JP. An optimization tool for satellite equipment layout. Advances in Space Research. 2018;61(1):223-234. [Link] [DOI:10.1016/j.asr.2017.10.030]
5. Xiao RB, Xu YC, Amos M. Two hybrid compaction algorithms for the layout optimization problem. Biosystems. 200;90(2):560-567. [Link] [DOI:10.1016/j.biosystems.2006.12.007]
6. Cuco APC, De Sousa FL, Vlassov VV, Da Silva Neto AJ. Multi-objective design optimization of a new space radiator. Optimization and Engineering. 2011;12(3):393-406. [Link] [DOI:10.1007/s11081-011-9142-6]
7. Pérez-Grande I, Sanz-Andrés A, Guerra C, Alonso G. Analytical study of the thermal behaviour and stability of a small satellite. Applied Thermal Engineering. 2009;29(11-12):2567-2573. [Link] [DOI:10.1016/j.applthermaleng.2008.12.038]
8. Torres A, Mishkinis D, Kaya T. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction. Applied Thermal Engineering. 2014;65(1-2):623-632. [Link] [DOI:10.1016/j.applthermaleng.2013.11.040]
9. Escobar E, Diaz M, Zagal JC. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission. Applied Thermal Engineering. 2016;105:490-500. [Link] [DOI:10.1016/j.applthermaleng.2016.03.024]
10. Farrahi A, Pérez-Grande I. Simplified analysis of the thermal behavior of a spinning satellite flying over Sun-synchronous orbits. Applied Thermal Engineering. 2017;125:1146-1156. [Link] [DOI:10.1016/j.applthermaleng.2017.07.033]
11. Arduini C, Laneve G, Folco S. Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronautica. 1998;43(9-10):473-479. [Link] [DOI:10.1016/S0094-5765(98)00180-5]
12. Gadalla MA. Prediction of temperature variation in a rotating spacecraft in space environment. Applied Thermal Engineering. 2005;25(14-15):2379-2397. [Link] [DOI:10.1016/j.applthermaleng.2004.12.018]
13. 13 Kovács R, Józsa V. Thermal analysis of the SMOG-1 PocketQube satellite. Applied Thermal Engineering. 2018;139:506-513. [Link] [DOI:10.1016/j.applthermaleng.2018.05.020]
14. Yang C, Hou X, Wang L. Thermal design, analysis and comparison on three concepts of space solar power satellite. Acta Astronautica. 2017;137:382-402. [Link] [DOI:10.1016/j.actaastro.2017.05.004]
15. Mashaei PR, Shahryari M. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling. Acta Astronautica. 2015;111:345-355. [Link] [DOI:10.1016/j.actaastro.2015.02.003]
16. Junzhou H, Yanjun Sh, Hongfei T. Layout design of a satellite module using a human-guided genetic algorithm. International Conference on Computational Intelligence and Security, 3-6 Nov 2006, Guangzhou, China. Piscataway: IEEE; 2006. [Link] [DOI:10.1109/ICCIAS.2006.294127]
17. Zhu JH, Zhang WH, Beckers P. Multi-component layout design with coupled shape and topology optimization. International Journal for Simulation and Multidisciplinary Design Optimization. 2008;2(3):167-176. [Link] [DOI:10.1051/ijsmdo:2008023]
18. Zhang B, Teng HF, Shi YJ. Layout optimization of satellite module using soft computing techniques. Applied Soft Computing. 2008;8(1):507-521. [Link] [DOI:10.1016/j.asoc.2007.03.004]
19. Fakoor M, Taghinezhad M, Kosari AR. Design of configuration and layout optimization in GEO satellite. Modares Mechanical Engineering. 2015;15(1):339-351. [Persian] []
20. Fakoor M, Taghinezhad M, Kosari A. Review of method for optimal layout of satellite components. Modares Mechanical Engineering. 2013;13(9):126-137. [Persian] [Link]
21. Fakoor M, Mohammad Zadeh P, Momeni Eskandari H. Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints. Aerospace Science and Technology. 2017;71:172-188. [Link] [DOI:10.1016/j.ast.2017.09.012]
22. Chang YK, Kang MY, Park JH, Choi YJ. A study on thermal modeling and heat load mitigation for satellite electronic components. 15th Annual AIAA/USU Conference on Small Satellites. North Logan: Small Satellite Conference; 2001. [Link]
23. Lyon R, Sellers J, Underwood C. Small satellite thermal modeling and design at USAFA: FalconSat-2 applications. IEEE Aerospace Conference, 9-16 March 2002, Big Sky, MT, USA. Piscataway: IEEE; 2002. [Link]
24. Elhady AM. Design and analysis of a LEO micro-satellite thermal control including thermal contact conductance. IEEE Aerospace Conference, 6-13 March 2010, Big Sky, MT, USA. Piscataway: IEEE; 2010. [Link] [DOI:10.1109/AERO.2010.5446763]
25. Hengeveld DW, Braun JE, Groll EA, Williams AD. Optimal placement of electronic components to minimize heat flux nonuniformities. Journal of Spacecraft and Rockets. 2011;48(4):556-563. [Link] [DOI:10.2514/1.47507]
26. Ghasemi M, Salami A. The principles of thermal design of small satellites. Tehran: Iran university of science and technology (IUST); 2000. [Persian] [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.