Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1075-1084 | Back to browse issues page

XML Persian Abstract Print


1- Aerospace Engineering Department, Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (9122 Views)
Fuel-air mixing is one of the challenging issues in supersonic velocities that is mostly used in scramjet engine combustors. Sufficient mixing between the supersonic airstream and the fuel jet is critical for designing of scramjet engines, and this is due to the very short residence timescale for the mixture in supersonic flows. Various studies and investigations have been conducted on enhancing the fuel-air mixture. One way to improve fuel-air mixture is to employ step before the injection point, so a low-speed recirculation zone is created before the injection point and causes to improve fuel-air mixture. Employing step causes to increase stagnation pressure loss and we should compromise between mixing efficiency and stagnation pressure loss. In this paper, the effects of step on Gaseous sonic transverse injection in supersonic crossflow are investigated numerically. Two-dimensional Reynolds Averaged Navier-Stokes equations and k-ω sst turbulence model and the perfect gas equation have been solved, using Fluent software. The results of the numerical solution are compared and validated with available experimental data. Numerical results showed good agreement with the experimental values. Then, the effects of varying step heights and distance of step from injection point on Mach disc height and stagnation pressure loss are considered numerically.
Full-Text [PDF 1594 kb]   (4088 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/09/7 | Accepted: 2018/11/18 | Published: 2019/05/1

References
1. Curran ET. Scramjet engines: The first forty years. Journal of Propulsion and Power. 2001;17(6):1138-1148. [Link] [DOI:10.2514/2.5875]
2. Pandey KM, Reddy SK. Numerical simulation of wall injection with cavity in supersonic flows of scramjet combustion. International Journal of Soft Computing Engineering (IJSCE). 2012;2(1):2231-2307. [Link]
3. Moorthy JVS, Charyulu BVN, Amba Prasad Rao G. Sustained combustion with Ramp-Cavity enabled Scramjet Combustor. ISME Journal of Thermofluids. 2018;3(2):15-30. [Link]
4. Kiani M, Houshfar E, Ashjaee M. An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners. International Journal of Hydrogen Energy. 2018;43(5):3034-3049. [Link] [DOI:10.1016/j.ijhydene.2017.12.126]
5. Karlgaard CD, Tartabini PV, Blanchard RC, Kirsch M, Toniolo MD. Hyper-X Post-Flight Trajectory Reconstruction. Journal of Spacecraft and Rockets. 2006;43(1):105-115. [Link] [DOI:10.2514/1.12733]
6. Harsha P, Keel L, Castrogiovanni A, Sherrill R. X-43A vehicle design and manufacture. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 16-20 May, 2005, Capua, Italy. Reston: AIAA; 2005. [Link]
7. Hank J, Murphy J, Mutzman R. The X-51A scramjet engine flight demonstration program. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 28 April-1 May, 2008, Dayton, Ohio. Reston: AIAA; 2008. p. 2540. [Link] [DOI:10.2514/6.2008-2540]
8. Zahedzadeh M, Ommi F. Numerical study of supersonic gas flow in single expansion ramp nozzle. Mechanical Journal of Tabriz University. 2019;49(1):137-145. [Persian] [Link]
9. Huang W, Pourkashanian M, Ma L, Ingham DB, Luo SB, Wang ZG. Investigation on the flameholding mechanisms in supersonic flows: Backward-facing step and cavity flameholder. Journal of Visualization. 2011;14(1):63-74. [Link] [DOI:10.1007/s12650-010-0064-8]
10. Bogdanoff DW. Advanced injection and mixing techniques for scramjet combustors. Journal of Propulsion and Power. 1994;10(2):183-190. [Link] [DOI:10.2514/3.23728]
11. Curran ET, Heiser WH, Pratt DT. Fluid phenomena in scramjet combustion systems. Annual Review of Fluid Mechanics. 1996;28(1):323-360. [Link] [DOI:10.1146/annurev.fl.28.010196.001543]
12. Seiner JM, Dash SM, Kenzakowski DC. Historical survey on enhanced mixing in scramjet engines. Journal of Propulsion and Power. 2001;17(6):1273-1286. [Link] [DOI:10.2514/2.5876]
13. Huang W. Transverse jet in supersonic crossflows. Aerospace Science and Technology. 2016;50:183-195. [Link] [DOI:10.1016/j.ast.2016.01.001]
14. Jalili B, Ommi F, Nourazar S. Experimental study of effective factors on liquid jet trajectory and breakup in gaseous crossflow. Modares Mechanical Engineering. 2018;17(12):354-360. [Persian] [Link]
15. Manna P, Chakraborty D. Numerical investigation of transverse sonic injection in a non-reacting supersonic combustor. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2005;219(3):205-215. [Link] [DOI:10.1243/095441005X30261]
16. Chenault CF, Beran PS, Bowersox RDW. Numerical investigation of supersonic injection using a Reynolds-stress turbulence model. AIAA Journal. 1999;37(10):1257-1269. https://doi.org/10.2514/3.14316 [Link] [DOI:10.2514/2.594]
17. Yan L, Huang W, Zhang TT, Li H, Yan XT. Numerical investigation of the nonreacting and reacting flow fields in a transverse gaseous injection channel with different species. Acta Astronautica. 2014;105(1):17-23. [Link] [DOI:10.1016/j.actaastro.2014.08.018]
18. Hersch M, Povinelli FP, Povinelli LA. Optical study of sonic and supersonic jet penetration from a flat plate into a Mach 2 airstream [Internet]. Washington DC: NASA; 1970 [cited 2018 Jul 14]. Available from: https://ntrs.nasa.gov/search.jsp?R=19700012407 [Link]
19. Abbitt III JD, Hartfield RJ, McDaniel JC. Mole-fraction imaging of transverse injection in a ducted supersonicflow. AIAA Journal. 1991;29(3):431-435. [Link] [DOI:10.2514/3.10596]
20. Papamoschou D, Hubbard DG, Lin M. Observations of supersonic transverse jets. 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, 24-26 June, 1991, Honolulu, HI, U.S.A. Reston: AIAA; 1991. [Link]
21. Sun M, Hu Z. Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow. Journal of Fluid Mechanics. 2018;850:551-583. [Link] [DOI:10.1017/jfm.2018.455]
22. Sun MB, Hu ZW. Generation of upper trailing counter-rotating vortices of a sonic jet in a supersonic crossflow. AIAA Journal. 2018;56(3):1047-1059. [Link] [DOI:10.2514/1.J056442]
23. Volkov KN, Emel'yanov VN, Yakovchuk MS. Transverse injection of a jet from the surface of a flat plate into the supersonic flow over it. Journal of Engineering Physics and Thermophysics. 2017;90(6):1439-1444. [Link] [DOI:10.1007/s10891-017-1703-x]
24. Huang W, Liu WD, Li SB, Xia ZX, Liu J, Wang ZG. Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronautica. 2012;73:1-9. [Link] [DOI:10.1016/j.actaastro.2011.12.003]
25. Yamauchi K, Kitadani H, Masuya G, Tomioka S, Izumikawa M. Penetration of jets injected behind backward-facing step in supersonic stream. 35th Joint Propulsion Conference and Exhibit, 20-24 June, 1999, Los Angeles, CA, U.S.A. Reston: AIAA; 1999. [Link] [DOI:10.2514/6.1999-2106]
26. McDaniel JC, Graves Jr J. Laser-induced-fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor. Journal of Propulsion and Power. 1988;4(6):591-597. [Link] [DOI:10.2514/3.23105]
27. McDaniel JC, Fletcher DG, Hartfield RJ, Hollo SD. Transverse injection into Mach 2 flow behind a rearward-facing step: A 3-D, compressible flow test case for hypersonic combustor CFD validation. 3rd International Aerospace Planes Conference, 3-5 December, 1991, Orlando, FL, U.S.A. Reston: AIAA; 1991. [Link] [DOI:10.2514/6.1991-5071]
28. Liu Q, Baccarella D, McGann B, Lee T, Do H. Experimental investigation of single jet and dual jet injection in a supersonic combustor. 2018 AIAA Aerospace Sciences Meeting, 8-12 January, 2018, Kissimmee, Florida, U.S.A. Reston: AIAA SciTech Forum; 2018. [Link]
29. Sriram AT, Chakraborty D. Numerical exploration of staged transverse injection into confined supersonic flow behind a backward-facing step. Defence Science Journal. 2011;61(1):3-11. [Link] [DOI:10.14429/dsj.61.20]
30. Huang W, Jin L, Yan L, Tan JG. Influence of jet-to-crossflow pressure ratio on nonreacting and reacting processes in a scramjet combustor with backward-facing steps. International Journal of Hydrogen Energy. 2014;39(36):21242-21250. [Link] [DOI:10.1016/j.ijhydene.2014.10.073]
31. Sankaran A, Sundararaj K, Santhanakrishnan R. Certain investigations of numerical simulation on supersonic combustor of staged transverse injection behind a backward facing step with cavity. Asian Journal of Research in Social Sciences and Humanities. 2017;7(2):603-614. [Link] [DOI:10.5958/2249-7315.2017.00113.7]
32. Moradi R, Mahyari A, Barzegar Gerdroodbary M, Abdollahi A, Amini Y. Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow. International Journal of Hydrogen Energy. 2018;43(33):16364-16372. [Link] [DOI:10.1016/j.ijhydene.2018.06.166]
33. Aso S, Okuyama S, Kawai M, Ando Y. Experimental study on mixing phenomena in supersonic flows with slot injection. 29th Aerospace Sciences Meeting, 7-10 January, 1991, Reno, Nevada, U.S.A. Reston: AIAA; 1991. [Link] [DOI:10.2514/6.1991-16]
34. Séror S, Kosarev L. Compressible Turbulence Model consistency for separated high-speed flow regimes. Journal of Spacecraft and Rockets. 2017;54(4):840-862. [Link] [DOI:10.2514/1.A33681]
35. Payne JL, Roy CJ, Beresh SJ. A comparison of turbulence models for a supersonic jet in transonic crossflow. 39th Aerospace Sciences Meeting and Exhibit, 8-11 January, 2001, Reno, Nevada, U.S.A. Reston: AIAA; 2001. [Link] [DOI:10.2514/6.2001-1048]
36. Viti V, Schetz J, Neel R. Comparison of first and second order turbulence models for a jet/3D ramp combination in supersonic flow. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January, 2005, Reno, Nevada, U.S.A. Reston: AIAA; 2005. [Link] [DOI:10.2514/6.2005-1100]
37. Shojaeefard MH, Tahani M. An introduction to turbulent flows and its modeling. 1st Edition. Tehran: Iran University of Science and Technology Press; 2012. [Persian] [Link]
38. White FM. Fluid mechanics. 7th Edition. New York: McGraw-Hill; 2011. [Link]
39. Schlichting H, Gersten K. Boundary-layer theory. 8th Edition. Berlin: Springer; 2003. [Link]
40. Amano RS, Sun D. Numerical simulation of supersonic flowfield with secondary injection. 24th International Congress of the Aeronautical Sciences, 29 August-3 September, 2004, Yokohama, Japan. Yokohama: ICAS 2004; 2004. [Link]
41. Dharavath M, Manna P, Chakraborty D. Computational study of transverse slot injection in supersonic flow. Defence Science Journal. 2018;68(2):121-128. [Link] [DOI:10.14429/dsj.68.11069]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.