Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1865-1873 | Back to browse issues page

XML Persian Abstract Print


1- Advanced Materials Forming Research Center, Babol Noshirvani University of Technology, Babol, Iran
2- Advanced Materials Forming Research Center, Babol Noshirvani University of Technology, Babol, Iran , j.hosseini@nit.ac.ir
Abstract:   (7817 Views)
In this paper, the effect of geometric parameters of tube and die on the forming behavior of AA6061 step tube in hot metal gas forming process (HMGF) is investigated. For this purpose, empirical experiments and finite element simulations with ABAQUS software have been used. Investigations have been made at the different ratios of die to tube diameter (D/d) and the different ratios of tube thickness to diameter (t/d). A simple theoretical model for the relationship between these geometric parameters and the process parameters such as internal pressure and axial feeding is presented. The results show that under constant internal pressure and axial feeding conditions, the die filling percentage decreases with increasing the ratios of D/d and t/d. Also, in the constant D/d ratio, by increasing the t/d ratio to about 0.05, the die filling percentage reduces gradually, but with increasing t/d to 0.06, a sharp decrease occurs in the die filling percentage. Using different simulations, the internal pressure, and axial feeding are changed proportional to the t/d and D/d ratios. The results show that in accordance with the prediction of the theoretical model, the relative internal pressure and relative axial feeding should be increased linearly with increasing the t/d and expansion ratio , respectively, to give specimens with approximately the same die filling percentage.
Full-Text [PDF 1153 kb]   (3127 Downloads)    
Article Type: Original Research | Subject: Forming of metal sheets
Received: 2018/10/17 | Accepted: 2019/01/20 | Published: 2019/08/12

References
1. Lee MY, Sohn SM, Kang CY, Suh DW, Lee SY. Effects of pre-treatment conditions on warm hydroformability of 7075 aluminum tubes. Journal of Materials Processing Technology. 2004;155-156:1337-1343. [Link] [DOI:10.1016/j.jmatprotec.2004.04.200]
2. Seyedkashi SMH, Moslemi Naeini H, Liaghat GH, Mosavi Mashadi M, Moon YH. Numerical and experimental study on the effects of expansion ratio, corner fillets and strain rate in warm hydroforming of aluminum tubes. Modares Mechanical Engineering. 2013;12(5):122-131. [Persian] [Link]
3. Hashemi SJ, Moslemi Naeini H, Liaghat GH, Shahbazi Karami J, Roohi AH. Prediction of bursting in warm tube hydroforming using modified ductile fracture criteria. Modares Mechanical Engineering. 2015;14(16):201-211. [Persian] [Link]
4. Hashemi SJ, Moslemi Naeini H, Liaghat GH, Azizi Tafti R, Rahmani F. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests. Journal of Mechanical Science and Technology. 2014;28(11):4745-4752. [Link] [DOI:10.1007/s12206-014-1041-2]
5. Keigler M, Bauer H, Harrison D, De Silva AKM. Enhancing the formability of aluminum components via temperature controlled hydroforming. Journal of Materials Processing Technology. 2005;167(2-3):363-370. [Link] [DOI:10.1016/j.jmatprotec.2005.06.024]
6. Liu G, Zhang WD, He ZB, Yuan SJ, Lin Z. Warm hydroforming of magnesium alloy tube with large expansion ratio within non-uniform temperature field. Transactions of Nonferrous Metals Society of China. 2012;22 Suppl 2:s408-s415. [Link] [DOI:10.1016/S1003-6326(12)61739-7]
7. Lowrie J, Ngaile G. Scalability of conventional tube hydroforming processes from macro to micro/meso. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 2018;232(12):2164-2177. [Link] [DOI:10.1177/0954405416683736]
8. He ZB, Liu G, Wu J, Yuan SJ, Liang YC. Mechanical property and formability of AZ31B extruded tube at elevated temperature. Transactions of Nonferrous Metals Society of China. 2008;18 Suppl 1:s209-s213. [Link] [DOI:10.1016/S1003-6326(10)60204-X]
9. Nazzal MA, Abu-Farha FK. Finite element modeling of superplastic forming of tubular shapes. Key Engineering Materials. 2010;433:179-184. [Link] [DOI:10.4028/www.scientific.net/KEM.433.179]
10. Lin YL, He ZB, Yuan SJ, Wu J. Formability determination of AZ31B tube for IHPF process at elevated temperature. Transactions of Nonferrous Metals Society of China. 2011;21(4):851-856. [Link] [DOI:10.1016/S1003-6326(11)60792-9]
11. He ZB, Fan XB, Shao F, Zheng KL, Wang ZB, Yuan SJ. Formability and microstructure of AA6061 Al alloy tube for hot metal gas forming at elevated temperature. Transactions of Nonferrous Metals Society of China. 2012;22 Suppl 2:s364-s369. [Link] [DOI:10.1016/S1003-6326(12)61732-4]
12. He ZB, Teng BG, Che CY, Wang ZB, Zheng KL, Yuan SJ. Mechanical properties and formability of TA2 extruded tube for hot metal gas forming at elevated temperature. Transactions of Nonferrous Metals. 2012;22:479-484. [Link] [DOI:10.1016/S1003-6326(12)61749-X]
13. Zoei MS, Farzin M, Mohammadi AH. Finite element analysis and experimental investigation on gas forming of hot aluminum alloy sheet. Modares Mechanical Engineering. 2011;11(2):49-56. [Persian] [Link]
14. Nasrollahzade M, Moslemi Naeini H, Hashemi SJ, Abbaszadeh B, Shahbazi Karami J. Experimental investigation of aluminum tubes hot gas forming and production of square cross-section specimens. Modares Mechanical Engineering. 2015;15(12):435-442. [Persian] [Link]
15. Nasrollahzade M, Shahbazi Karami J, Moslemi Naeini H, Hashemi SJ, Mohammadi Najafabadi H. Multiobjective optimization of hot metal gas forming process to production of square parts. Modares Mechanical Engineering. 2016;16(10):364-374. [Persian] [Link]
16. Hajinejad Sorkhi M, Hosseinipour SJ, Jamshidi Aval H. Formability of 6063 aluminum alloy tube at high temperature using multi-bulge test by hot metal gas forming process. Modares Mechanical Engineering. 2016;16(3):185-192. [Persian] [Link]
17. Maeno T, Mori KI, Fujimoto K. Hot gas bulging of sealed aluminum alloy tube using resistance heating. Manufacturing Review. 2014;1:5. [Link] [DOI:10.1051/mfreview/2014004]
18. Paul A, Strano M. The influence of process variables on the gas forming and press hardening of steel tubes. Journal of Materials Processing Technology. 2016;228:160-169. [Link] [DOI:10.1016/j.jmatprotec.2015.02.038]
19. Mosel A, Lambarri J, Degenkolb L, Reuther F, Hinojo JL, Rößiger J, et al. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509. AIP Conference Proceedings. 2018;1960(1):160019. [Link] [DOI:10.1063/1.5035045]
20. Wu Y, Liu G, Wang K, Liu Z, Yuan Sh. The deformation and microstructure of Ti-3Al-2.5V tubular component for non-uniform temperature hot gas forming. The International Journal of Advanced Manufacturing Technology. 2017;88(5-8):2143-2152. [Link] [DOI:10.1007/s00170-016-8927-3]
21. Timoshenko S. Strength of materials, advanced theory and problems. 3rd Edition. Ashrafi HR, translator. Tehran: Norpardazan; 2013. pp. 103-118. [Persian] [Link]
22. Shamsi Sarband A, Hosseinipour SJ, Bakhshi Jooybari M, Shakeri M. The effect of geometric parameters of conical cups on the preform shape in two-stage superplastic forming process. Journal of Materials Engineering and Performance. 2013;22(12):3601-3611. [Link] [DOI:10.1007/s11665-013-0636-6]
23. Drezet JM, Phillion AB. As-cast residual stresses in an aluminum alloy AA6063 billet: Neutron diffraction measurements and finite element modeling. Metallurgical and Materials Transactions A. 2010;41(13):3396-3404. [Link] [DOI:10.1007/s11661-010-0424-y]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.