Volume 19, Issue 10 (October 2019)                   Modares Mechanical Engineering 2019, 19(10): 2535-2541 | Back to browse issues page

XML Persian Abstract Print

1- Department of Materials Engineering, Bu-Ali Sina University, Hamedan
2- Department of Materials Engineering, Bu-Ali Sina University, Hamedan , y.mazaheri@basu.ac.ir
Abstract:   (4175 Views)
The Nd: YAG pulsed laser welding process with different speed and shielding gas was applied on 2205 duplex stainless steel. The effects of different parameters on the microstructural evolutions and mechanical properties were investigated. Four different zones with different secondary austenite contents were observed in the weld microstructure. By changing the shielding gas from argon to nitrogen, the secondary austenite percentage was not significantly varied. The secondary austenite fraction was showed about 38% reduction with increasing the welding speed. The weld penetration depth decreased with changing the shielding gas from argon to nitrogen (about 26% and 14% reduction at speed of 3.8 and 8.3 mm/s, respectively) and increasing the welding speed (about 43% and 34% reduction under shielding gas of argon and nitrogen, respectively). The variations in microhardness values along the weld line were correlated to the microstructural characterizations. Changing the welding speed had no significant effect on the microhardness variations, but changing the shielding gas from argon to nitrogen caused a significant increase of microhardness.
Full-Text [PDF 1433 kb]   (2186 Downloads)    
Article Type: Original Research | Subject: Welding
Received: 2018/10/21 | Accepted: 2019/02/24 | Published: 2019/10/22

1. Mirakhorli F, Malek Ghaini F, Torkamany MJ. Development of weld metal microstructures in pulsed laser welding of duplex stainless steel. Journal of Materials Engineering and Performance. 2012;21(10):2173-2176. [Link] [DOI:10.1007/s11665-012-0141-3]
2. Torkamany MJ, Tahamtan S, Sabbaghzadeh J. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser. Materials & Design. 2010;31(1):458-465. [Link] [DOI:10.1016/j.matdes.2009.05.046]
3. Cao X, Jahazi M. Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser. Optics and Lasers in Engineering. 2009;47(11):1231-1241. [Link] [DOI:10.1016/j.optlaseng.2009.05.010]
4. Hosseini Motlagh NS, Parvin P, Jandaghi M, Torkamany MJ. The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding. Optics and Laser Technology. 2013;54:191-198. [Link] [DOI:10.1016/j.optlastec.2013.04.027]
5. Assuncao E, Williams S. Comparison of continuous wave and pulsed wave laser welding effects. Optics and Lasers in Engineering. 2013;51(6):674-680. [Link] [DOI:10.1016/j.optlaseng.2013.01.007]
6. Westin EM, Johansson MM, Pettersson RFA. Effect of nitrogen-containing shielding and backing gas on the pitting corrosion resistance of welded lean duplex stainless steel LDX 2101®(EN 1.4162, UNS S32101). Welding in the World. 2013;57(4):467-476. [Link] [DOI:10.1007/s40194-013-0046-2]
7. Tzeng YF. Process characterisation of pulsed Nd:YAG laser seam welding. The International Journal of Advanced Manufacturing Technology. 2000;16(1):10-18. [Link] [DOI:10.1007/PL00013126]
8. Montross CS, Wei T, Ye L, Clark G, Mai YW. Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue. 2002;24(10):1021-1036. [Link] [DOI:10.1016/S0142-1123(02)00022-1]
9. Malek Ghaini F, Hamedi MJ, Torkamany MJ, Sabbaghzadeh J. Weld metal microstructural characteristics in pulsed Nd:YAG laser welding. Scripta Materialia. 2007;56(11):955-958. [Link] [DOI:10.1016/j.scriptamat.2007.02.019]
10. Torkamany MJ, Hamedi MJ, Malek F, Sabbaghzadeh J. The effect of process parameters on keyhole welding with a 400 W Nd:YAG pulsed laser. Journal of Physics D Applied Physics. 2006;39(21):4563. [Link] [DOI:10.1088/0022-3727/39/21/009]
11. Pekkarinen J, Kujanpää V. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds. Physics Procedia. 2010;5(Pt A):517-523. [Link] [DOI:10.1016/j.phpro.2010.08.175]
12. Kahar SD. Duplex stainless steels-an overview. International Journal of Engineering Research and Application. 2017;7(4 Pt 4):27-36. [Link] [DOI:10.9790/9622-0704042736]
13. Muthupandi V, Bala Srinivasan P, Shankar V, Seshadri SK, Sundaresan S. Effect of nickel and nitrogen addition on the microstructure and mechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals. Materials Letters. 2005;59(18):2305-2309. [Link] [DOI:10.1016/j.matlet.2005.03.010]
14. Sabbaghzadeh J, Azizi M, Torkamany MJ. Numerical and experimental investigation of seam welding with a pulsed laser. Optics & Laser Technology. 2008;40(2):289-296. [Link] [DOI:10.1016/j.optlastec.2007.05.005]
15. Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Hoboken: John Wiley & Sons; 2005. [Link]
16. Guo LQ, Lin MC, Qiao LJ, Volinsky AA. Ferrite and austenite phase identification in duplex stainless steel using SPM techniques. Applied Surface Science. 2013;287:499-501. [Link] [DOI:10.1016/j.apsusc.2013.09.041]
17. Tao P, Gong JM, Wang YF, Jiang Y, Li Y, Cen WW. Characterization on stress-strain behavior of ferrite and austenite in a 2205 duplex stainless steel based on nanoindentation and finite element method. Results in Physics. 2018;11:377-384. [Link] [DOI:10.1016/j.rinp.2018.06.023]
18. Hsueh CH, Liao MJ, Wang SH, Tsai YT, Yang JR, Wu R, et al. Size effect and strain induced double twin by nanoindentation in DSS weld metal of vibration-assisted GTAW. Materials Chemistry and Physics. 2018;219:40-50. [Link] [DOI:10.1016/j.matchemphys.2018.07.055]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.