Volume 19, Issue 10 (October 2019)                   Modares Mechanical Engineering 2019, 19(10): 2339-2350 | Back to browse issues page

XML Persian Abstract Print

1- Department of Aerospace Engineering, Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran
2- Department of Aerospace Engineering, Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran , khoshnood@kntu.ac.ir
Abstract:   (6965 Views)
Gas turbines have a wide range of application in different industries. There are different models of the gas turbine for its analysis and diagnosis. In this paper, a hybrid model is considered for the gas turbine. This model combines thermodynamic relations and data-based equations which cause to eliminate dynamic loops of thermodynamic relations. Also, the compressor performance curve is considered in the proposed model which leads to noticing physical and geometric characteristic of a gas turbine. The model is dynamic and nonlinear that cause to adapt to a different condition and increase the accuracy of modeling. The model is accurate, simplified and nonlinear state space form. For these reasons, the model is suitable for analyzing of controllers and observers. The proposed controller is a new sliding model controller for implementing in the model. The controller is based on the l_1 norm and frequency analysis. Since the sliding mode is robust and the l_1 norm is optimizer than the l_2 norm, the controller tracks fuel command with acceptable accuracy and minimizing the control fluctuations.
Also, the data that is used in this paper is the data of an industrial gas turbine (IGT25) of Iran's national turbine which is logged in different ambient and functions conditions.
Full-Text [PDF 1078 kb]   (2295 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/11/3 | Accepted: 2019/02/13 | Published: 2019/10/22

1. Sanghi V, Lakshmanan BK, Sundararajan V. Survey of advancements in jet-engine thermodynamic simulation. Journal of Propulsion and Power. 2000;16(5):797-807. [Link] [DOI:10.2514/2.5644]
2. Ki J, Kong C, Kho S, Lee C. Steady-state and transient performance modeling of smart UAV propulsion system using Simulink. Journal of Engineering for Gas Turbines and Power. 2009;131(3):031702. [Link] [DOI:10.1115/1.2982141]
3. Ogaji SOT, Singh R, Probert SD. Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine. Applied Energy. 2002;71(4):321-339. [Link] [DOI:10.1016/S0306-2619(02)00015-6]
4. Vishwanath Rao AN. Application of auto associative neural network for aero engine control system sensor fault detection, isolation and accommodation. DRDO Science Spectrum. 2009 Mar:12-15. [Link]
5. Alavinia SM, Sadrnia MA, Khosrowjerdi MJ, Fateh MM. Robust fault detection to determine compressor surge point via dynamic neural network-based subspace identification technique. Journal of Engineering for Gas Turbines and Power. 2014;136(8):082602. [Link] [DOI:10.1115/1.4026610]
6. Wang J, Ge W, Zhou J, Wu H, Jin Q. Fault isolation based on residual evaluation and contribution analysis. Journal of the Franklin Institute. 2017;354(6):2591-2612. [Link] [DOI:10.1016/j.jfranklin.2016.09.002]
7. Holcomb CM, De Callafon RA, Bitmead RR. Closed-loop identification of Hammerstein systems with application to gas turbines. IFAC Proceedings Volumes. 2014;47(3):493-498. [Link] [DOI:10.3182/20140824-6-ZA-1003.01754]
8. Lu F, Ye Y, Huang J. Gas turbine engine identification based on a bank of self-tuning wiener models using fast kernel extreme learning machine. Energies. 2017;10(9):1363. [Link] [DOI:10.3390/en10091363]
9. Simani S. Identification and fault diagnosis of a simulated model of an industrial gas turbine. IEEE Transactions on Industrial Informatics. 2005;1(3):202-216. [Link] [DOI:10.1109/TII.2005.844425]
10. Mirzaee A, Salahshoor K. Fault tolerant control of an industrial gas turbine based on a hybrid fuzzy adaptive unscented Kalman filter. Journal of Engineering for Gas Turbines and Power. 2013;135(12):122501. [Link] [DOI:10.1115/1.4025309]
11. Mohammadi E, Montazeri-Gh M. A new approach to the gray-box identification of wiener models with the application of gas turbine engine modeling. Journal of Engineering for Gas Turbines and Power. 2015;137(7):071202. [Link] [DOI:10.1115/1.4029170]
12. Bahrami S, Ghaffari A, Sadati SH, Thern M. Identifying a simplified model for heavy duty gas turbine. Journal of Mechanical Science and Technology. 2014;28(6):2399-2408. [Link] [DOI:10.1007/s12206-014-0532-5]
13. Afkhami H, Argha AR, Roopaei M, Ahrari Noori M. Surveying the control loops of the governor of the V94.2 gas turbine. World Applied Sciences Journal. 2011;15(10):1435-1441. [Link]
14. Rashidzadeh H, Hosseinalipour SM, Mohammadzadeh AR. The SGT-600 industrial twin-shaft gas turbine modeling for mechanical drive applications at the steady state conditions. Journal of Mechanical Science and Technology. 2015;29(10):4473-4481. [Link] [DOI:10.1007/s12206-015-0946-8]
15. Nail B, Kouzou A, Hafaifa A, Bekhiti B. Stabilizing linear multivariable gas turbine model via sliding mode control. Fundamental Sciences and Applications 2016;22:25-30. [Link]
16. Souder JS, Karl Hedrick J. Adaptive sliding mode control of air-fuel ratio in internal combustion engines. International Journal of Robust and Nonlinear Control. 2004;14(6):525-541. [Link] [DOI:10.1002/rnc.901]
17. Panda S, Bandyopadhyay B. Sliding mode control of gas turbines using multirate-output feedback. Journal of Engineering for Gas Turbines and Power. 2008;130(3):034501. [Link] [DOI:10.1115/1.2830546]
18. Mozayan SM, Saad M, Vahedi H, Fortin-Blanchette H, Soltani M. Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law. IEEE Transactions on Industrial Electronics. 2016;63(10):6148-6159. [Link] [DOI:10.1109/TIE.2016.2570718]
19. Plestan F, Shtessel Y, Brégeault V, Poznyak A. New methodologies for adaptive sliding mode control. International Journal of Control. 2010;83(9):1907-1919. [Link] [DOI:10.1080/00207179.2010.501385]
20. Rahme S, Meskin N. Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine. Control Engineering Practice. 2015;38:57-74. [Link] [DOI:10.1016/j.conengprac.2015.01.006]
21. Tajdari F, Kabganian M, Khodabakhshi E, Golgouneh AR. Design, implementation and control of a two-link fully-actuated robot capable of online identification of unknown dynamical parameters using adaptive sliding mode controller. Artificial Intelligence and Robotics (IRANOPEN), 9-9 April 2017, Qazvin, Iran. Piscataway: IEEE; 2017. [Link] [DOI:10.1109/RIOS.2017.7956449]
22. Tanner HG. Relaxed stability conditions for switched systems with dwell time. Asian Journal of Control. 2014;16(2):313-320. [Link] [DOI:10.1002/asjc.688]
23. Hajimolahoseini H, Taban MR, Soltanian Zadeh H. Extended Kalman filter frequency tracker for nonstationary harmonic signals. Measurement. 2012;45(1):126-132. [Link] [DOI:10.1016/j.measurement.2011.09.008]
24. Utkin V, Lee H. Chattering problem in sliding mode control systems. International Workshop on Variable Structure Systems, VSS'06, 5-7 June 2006, Alghero, Sardinia, Italy. Piscataway: IEEE; 2006. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.