Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 721-730 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Firouzian-Nejad A, Ghayour M, Ziaei-Rad S. Experimental and Numerical Study of Static Behavior of Bi-stable Hybrid Composite Laminates Containing Three Metallic Strips in its Middle Layer. Modares Mechanical Engineering 2020; 20 (3) :721-730
URL: http://mme.modares.ac.ir/article-15-27008-en.html
1- Dynamic System & Mechatronics Department, Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
2- Dynamic System & Mechatronics Department, Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran , szrad@cc.iut.ac.ir
Abstract:   (4336 Views)
This study introduces a new lay-ups of bi-stable hybrid composite laminate (BHCL) which consists of 90° unidirectional composite laminas in the upper and lower layers and metallic strips distributed along with the middle layer of 0° unidirectional composite laminas in the middle layer. The static characteristics of the laminates were investigated using the finite element (FE) method and were experimentally validated. The two stable configurations of laminate have identical curvatures with opposite signs. The curvature direction of the proposed BHCLs does not change during snap-through between stable states. This feature will give the engineers more freedom to design morphing structures with desired specifications. The effect of the width, thickness, and material properties of the strips and laminate side length on the static characteristics of the laminate were numerically investigated using the finite element method through Abaqus software. Several BHCLs with different materials, lay-up and dimension were fabricated for verification of the results. The curvatures, out of plane displacement, and the static snap-through load of the laminates were determined experimentally and compared with the results of the finite element method. A good qualitative and quantitative agreement was observed between the FE and the experimental results. The results show that it is possible to adjust residual curvature and load-carrying capability by changing the width, thickness, and material of the strips and laminate geometry.
Full-Text [PDF 1859 kb]   (1879 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2018/11/10 | Accepted: 2019/07/14 | Published: 2020/03/1

1. Arrieta AF, Bilgen O, Friswell MI, Ermanni P. Modelling and configuration control of wing-shaped bi-stable piezoelectric composites under aerodynamic loads. Aerospace Science and Technology.2013;29(1):453-461. [Link] [DOI:10.1016/j.ast.2013.05.004]
2. Telford R, Katnam KB, Young TM. Analysing thermally induced macro-scale residual stresses in tailored morphing composite laminates. Composite Structures. 2014;117:40-50. [Link] [DOI:10.1016/j.compstruct.2014.06.013]
3. Firouzian Nejad A, Ziaeirad S, Taki MS. Control of nonlinear vibration in bi-stable composite plates using fuzzy logic. Journal of Computational Methods in Engineering (Esteghlal). 2016;34(2):123-143. [Persian] [Link] [DOI:10.18869/acadpub.jcme.34.2.123]
4. Qing A, Weaver PM, Azarpeyvand M. Design and mechanical testing of a variable stiffness morphing trailing edge flap. Journal of Intelligent Material Systems Structures. 2018;29(4):669-683. [Link] [DOI:10.1177/1045389X17721028]
5. Daynes S, Diaconu CG, Potter KD, Weaver PM. Bistable prestressed symmetric laminates. Journal of Composite Materials. 2010;44(9):1119-1137. [Link] [DOI:10.1177/0021998309351603]
6. Hyer MW. Some observations on the cured shape of thin unsymmetric laminates. Journal of Composite Materials. 1981;15(2):175-194. [Link] [DOI:10.1177/002199838101500207]
7. Dano ML, Hyer MW. SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. International Journal of Solids and Structures. 2003;40(22):5949-5972. [Link] [DOI:10.1016/S0020-7683(03)00374-3]
8. Bowen CR, Kim HA, Salo AIT. Active composites based on bistable laminates. Procedia Engineering. 2014;75:140-144. [Link] [DOI:10.1016/j.proeng.2013.11.030]
9. Cantera MA, Romera JM, Adarraga I, Mujika F, Modelling and testing of the snap-through process of bi-stable cross-ply composites. Composite Structures. 2015;120:41-52. [Link] [DOI:10.1016/j.compstruct.2014.09.064]
10. Taki MS, Tikani R, Ziaei-Rad S, Firouzian-Nejad A. Dynamic responses of cross-ply bi-stable composite laminates with piezoelectric layers [Dissertation]. Isfahan: Isfahan University of Technology; 2016. pp:1003-1018. [Link] [DOI:10.1007/s00419-015-1075-7]
11. Diaconu CG, Weaver PM, Arrieta AF. Dynamic analysis of bi-stable composite plate. Journal of Sound and Vibration. 2009;322(4-5):987-1004. [Link] [DOI:10.1016/j.jsv.2008.11.032]
12. Firouzian-Nejad A, Ziaei-Rad S, Moor M. A modified shape function for calculating stable configurations and natural frequencies of bi-stable 0/90]T composite laminates. Modares Mechanical Engineering. 2016;16(4):119-128. [Persian] [Link]
13. Firouzian-Nejad A, Ziaei-Rad S, Moor M. Vibration analysis of bi-stable composite cross-ply laminates using refined shape functions. Journal of Composite Materials. 2017;51(8):1135-1148. [Link] [DOI:10.1177/0021998316658966]
14. Arrieta AF, Gemmeren VV, Anderson AJ, Weaver PM. Dynamics and control of twisting bi-stable structures. Smart Materials and Structures. 2018;27(2):025006. [Link] [DOI:10.1088/1361-665X/aa96d3]
15. Dano ML, Hyer MW. Thermally-induced deformation behavior of unsymmetric laminates. International Journal of Solids and Structures. 1998;35(17):2101-2120. [Link] [DOI:10.1016/S0020-7683(97)00167-4]
16. Hyer MW. The room-temperature shapes of four-layer unsymmetric cross-ply laminates. Journal of Composite Materials. 1982;16(4):318-340. [Link] [DOI:10.1177/002199838201600406]
17. Mattioni F, Weaver PM, Friswell MI. Multistable composite plates with piecewise variation of lay-up in the planform. International Journal of Solids and Structures. 2009;46(1):151-164. [Link] [DOI:10.1016/j.ijsolstr.2008.08.023]
18. Telford R, Katnam KB, Young TM. The effect of moisture ingress on through-thickness residual stresses in unsymmetric composite laminates: a combined experimental-numerical analysis. Composite Structures. 2014;107:502-511. [Link] [DOI:10.1016/j.compstruct.2013.08.008]
19. Eckstein E, Pirrera A, Weaver PM. Morphing high-temperature composite plates utilizing thermal gradients. Composite Structures. 2013;100:363-372. [Link] [DOI:10.1016/j.compstruct.2012.12.049]
20. Moore M, Ziaei-Rad S, Salehi H. Thermal Response and Stability Characteristics of Bi-stable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers. Applied Composite Materials. 2013;20(1):87-106. [Link] [DOI:10.1007/s10443-012-9255-x]
21. Moore M, Ziaei-Rad S, Firouzian-Nejad A. Temperature-curvature relationships in asymmetric angle ply laminates by considering the effects of resin layers and temperature dependency of material properties. Journal of Composite Materials. 2013;48(9):1071-1089. [Link] [DOI:10.1177/0021998313482155]
22. Cho M, Roh HY. Non-linear analysis of the curved shapes of unsymmetric laminates accounting for slippage effects. Composites Science Technology. 2003;63(15):2265-2275. [Link] [DOI:10.1016/S0266-3538(03)00177-5]
23. Ryu J, Kong JP, Kim SW, Koh JS, Cho KJ, Cho M. Curvature tailoring of unsymmetric laminates with an initial curvature. Journal of Composite Materials. 2012;47(25):3163-3174. [Link] [DOI:10.1177/0021998312462915]
24. Daynes S, Weaver PM. Analysis of unsymmetric CFRP-metal hybrid laminates for use in adaptive structures. Composites Part A: Applied Science and Manufacturing. 2010;41(11):1712-1718. [Link] [DOI:10.1016/j.compositesa.2010.08.009]
25. Firouzian-Nejad A, Mustapha S, Ziaei-Rad S, Ghayour M. Characterization of bi-stable pure and hybrid composite laminates-An experimental investigation of the static and dynamic responses. Journal of Composite Materials. 2018;53(5):653-667. [Link] [DOI:10.1177/0021998318789241]
26. Saberi S, Ghayour M, Mirdamadi H. Behaviour analysis of a bistable twisting hybrid composite plate with an external metal layer and effecting factors on stability region. Modares Mechanical Engineering. 2018;17(2):420-426. [Persian] [Link]
27. Firouzian-Nejad A, Bowen C, Mustapha S, Ghayour M, Ziaei-Rad S. Bi-stable hybrid composite laminates containing metallic strips: an experimental and numerical investigation. Smart Materials and Structures. 2019;28(5):1-13. [Link] [DOI:10.1088/1361-665X/ab1183]
28. Dai F, Li H, Du Sh. Cured shape and snap-through of bistable twisting hybrid [0/90/metal]T laminates. Composites Science and Technology. 2013;86(24):76-81. [Link] [DOI:10.1016/j.compscitech.2013.06.022]
29. Li H, Dai F, Weaver PM, Du Sh. Bistable hybrid symmetric laminates. Composite Structures. 2014;116:782-792. [Link] [DOI:10.1016/j.compstruct.2014.05.030]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.