Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 623-636 | Back to browse issues page

XML Persian Abstract Print

1- Materials Science Engineering Department, Imam Khomeini International University (IKIU), Qazvin, Iran
2- Materials Science Engineering Department, Imam Khomeini International University (IKIU), Qazvin, Iran , shaeri@eng.ikiu.ac.ir
Abstract:   (4788 Views)
Commercial pure (CP) titanium has many applications in biomaterials especially in implants due to its excellent biocompatibility. Despite the importance of surface properties in bio-applications, limited research has been conducted to improve surface properties of CP titanium by improving the structure. Therefore, the purpose of this research is to improve the corrosion and wear properties of CP titanium by reducing grain size by multi-directional forging (MDF) process. For this purpose, annealed CP titanium samples were forged by MDF up to six passes at ambient temperature and 220°C. To investigate the corrosion properties of specimens, the tafel polarization test was performed in a simulated body fluid (SBF) solution. The tribological properties were also investigated by pins-on-disk test at sliding speed and applied stress of 0.2 (m/s) and 1MPa, respectively. The results of microstructure analysis of the samples using a scanning electron microscope (SEM) equipped with EBSD showed that the ultrafine grain structure was formed in titanium CP, after 6 passes of the MDF. The results of the investigation of the tafel polarization test showed that the corrosion resistance of the samples increased with applying MDF and increasing the pass number, regardless of the processing temperature. Also, the corrosion resistance of MDFed samples at 220°C temperature was higher than the MDFed samples at ambient temperature. Wear resistance of CP titanium was also increased, by decreasing the grain size. The results of the investigation of surface morphology of samples using a field-emission scanning electron microscope showed mainly the abrasive and delamination wear mechanisms.
Full-Text [PDF 2182 kb]   (2176 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/11/11 | Accepted: 2019/06/9 | Published: 2020/03/1

1. Ansarian I, Shaeri MH, Ebrahimi M. Utilization of multi directional forging for fabrication of commercial pure titanium with ultrafine-grained microstructure. Modares Mechanical Engineering. 2018;18(2):371-382. [Persian] [Link]
2. Kadkhodayan M, Shariati M, Naseri R. Effect of work-piece cross section on the mechanical properties of commercially pure titanium produced by equal channel angular pressing. Modares Mechanical Engineering. 2015;15(6):157-166. [Persian] [Link]
3. Eftekhari M, Faraji G, Shapoorgan O, Baniassadi M. Experimental investigation of the effect of temperature in extrusion process of ECAPed nanostructured Titanium. Modares Mechanical Engineering. 2017;17(4):52-60. [Persian] [Link]
4. Nasaeri R, Kadkhodayan M, Shariati M. The investigation of springback of UFG commercially pure titanium in three-point bending test. Modares Mechanical Engineering. 2017;16(11):266-276. [Persian] [Link]
5. Suresh KS, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, et al. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid. Materials Science and Engineering: C. 2012;32(4):763-771. [Link] [DOI:10.1016/j.msec.2012.01.022]
6. Wang CT, Gao N, Gee MG, Wood RJ, Langdon TG. Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating. Journal of Materials Science. 2013;48(13):4742-4748. [Link] [DOI:10.1007/s10853-012-7110-y]
7. Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Skaret PC, Roven HJ. Microstructure evolution of commercial pure titanium during equal channel angular pressing. Materials Science and Engineering: A. 2010;527(3):789-796. [Link] [DOI:10.1016/j.msea.2009.09.005]
8. Fattah-alhosseini A, Keshavarz MK, Mazaheri Y, Ansari AR, Karimi M. Strengthening mechanisms of nano-grained commercial pure titanium processed by accumulative roll bonding. Materials Science and Engineering: A. 2017;693:164-169. [Link] [DOI:10.1016/j.msea.2017.03.070]
9. Lütjering G, Williams JC. Titanium. 2nd Edition. Berlin: Springer; 2003. [Link] [DOI:10.1007/978-3-540-71398-2]
10. Ansarian I, Shaeri MH, Ebrahimi M, Minárik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. Journal of Alloys and Compounds. 2019;776:83-95. [Link] [DOI:10.1016/j.jallcom.2018.10.196]
11. Naseri R, Kadkhodayan M, Shariati M. Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process. Transactions of Nonferrous Metals Society of China. 2017;27(9):1964-1975. [Link] [DOI:10.1016/S1003-6326(17)60221-8]
12. Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview. Materials Transactions. 2016;57(5):559-572. [Link] [DOI:10.2320/matertrans.M2015452]
13. Kim HS, Yoo SJ, Ahn JW, Kim DH, Kim WJ. Ultrafine grained titanium sheets with high strength and high corrosion resistance. Materials Science and Engineering: A. 2011;528(29-30):8479-8485. [Link] [DOI:10.1016/j.msea.2011.07.074]
14. Chaudhari GP. Corrosion of nanostructured and ultrafine-grained metallic implant materials. Materials Technology. 2016;31(13):812-817. [Link] [DOI:10.1080/10667857.2016.1242199]
15. Garbacz H, Pisarek M, Kurzydłowski KJ. Corrosion resistance of nanostructured titanium. Biomolecular Engineering. 2007;24(5):559-563. [Link] [DOI:10.1016/j.bioeng.2007.08.007]
16. Hoseini M, Shahryari A, Omanovic S, Szpunar JA. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corrosion Science. 2009;51(12):3064-3067. [Link] [DOI:10.1016/j.corsci.2009.08.017]
17. Kim HS, Kim WJ. Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Corrosion Science. 2014;89:331-337. [Link] [DOI:10.1016/j.corsci.2014.08.017]
18. Zheng CY, Nie FL, Zheng YF, Cheng Y, Wei SC, Valiev RZ. Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Applied Surface Science. 2011;257(13):5634-5640. [Link] [DOI:10.1016/j.apsusc.2011.01.062]
19. Dheda SS, Kim YK, Melnyk Ch, Liu W, Mohamed FA. Corrosion and in vitro biocompatibility properties of cryomilled-spark plasma sintered commercially pure titanium. Journal of Materials Science: Materials in Medicine. 2013;24(5):1239-1249. [Link] [DOI:10.1007/s10856-013-4889-2]
20. Purcek G, Saray O, Kul O, Karaman I, Yapici GG, Haouaoui M, et al. Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Materials Science and Engineering: A. 2009;517(1-2):97-104. [Link] [DOI:10.1016/j.msea.2009.03.054]
21. Wang CT, Gao N, Gee MG, Wood RJ, Langdon TG. Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear. 2012;280:28-35. [Link] [DOI:10.1016/j.wear.2012.01.012]
22. La P, Ma J, Zhu YT, Yang J, Liu W, Xue Q, et al. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Materialia. 2005;53(19):5167-5173. [Link] [DOI:10.1016/j.actamat.2005.07.031]
23. Tang L, Liu Ch, Chen Z, Ji D, Xiao H. Microstructures and tensile properties of Mg-Gd-Y-Zr alloy during multidirectional forging at 773 K. Materials & Design. 2013;50:587-596. [Link] [DOI:10.1016/j.matdes.2013.03.054]
24. Kundu A, Kapoor R, Tewari R, Chakravartty JK. Severe plastic deformation of copper using multiple compression in a channel die. Scripta Materialia. 2008;58(3):235-238. [Link] [DOI:10.1016/j.scriptamat.2007.09.046]
25. Akbaripanah F, Salavati MA, Mahmudi R. The influences of extrusion and Multi-Directional Forging (MDF) processes on microstructure, shear strength and microhardness of AM60 Magnesium Alloy. Modares Mechanical Engineering. 2017;16(11):409-416. [Persian] [Link]
26. Ralston KD, Birbilis N. Effect of grain size on corrosion: A review. Corrosion. 2010;66(7):075005. [Link] [DOI:10.5006/1.3462912]
27. Dan Song A, Jiang JH, Lin PH, Yang DH. Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Transactions of Nonferrous Metals Society of China. 2009;19(5):1065-1070. [Link] [DOI:10.1016/S1003-6326(08)60407-0]
28. Balakrishnan A, Lee BC, Kim TN, Panigrahi BB. Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application. Trends in Biomaterials & Artificial Organs. 2008;22(1):58-64. [Link]
29. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, et al. Corrosion resistance of ultra fine-grained Ti. Scripta Materialia. 2004;51(3):225-229. [Link] [DOI:10.1016/j.scriptamat.2004.04.011]
30. Kumar S, Sankara Narayanan TS, Ganesh Sundara Raman S, Seshadri SK. Thermal oxidation of CP Ti-An electrochemical and structural characterization. Materials Characterization. 2010;61(6):589-597. [Link] [DOI:10.1016/j.matchar.2010.03.002]
31. Tao S, Li DY. Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology. 2005;17(1):65-78. [Link] [DOI:10.1088/0957-4484/17/1/012]
32. Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds. 2009;468(1-2):222-229. [Link] [DOI:10.1016/j.jallcom.2008.01.084]
33. Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosion resistance of stainless steels. Corrosion Science. 2007;49(4):1933-1948. [Link] [DOI:10.1016/j.corsci.2006.08.021]
34. Ebrahimi M, Attarilar Sh, Djavanroodi F, Gode C, Kim HS. Wear properties of brass samples subjected to constrained groove pressing process. Materials & Design. 2014;63:531-537. [Link] [DOI:10.1016/j.matdes.2014.06.043]
35. Hutchings I, Shipway P. Tribology: Friction and wear of engineering materials. 2nd Edition. Amsterdam: Elsevier Science; 2017. [Link] [DOI:10.1016/B978-0-08-100910-9.00003-9]
36. Schulze KA, Marshall SJ, Gansky SA, Marshall GW. Color stability and hardness in dental composites after accelerated aging. Dental Materials. 2003;19(7):612-619. [Link] [DOI:10.1016/S0109-5641(03)00003-4]
37. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. Journal of Dentistry. 2006;34(3):214-220. [Link] [DOI:10.1016/j.jdent.2005.06.003]
38. Thiele JD, Melkote SN. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. Journal of Materials Processing Technology. 1999;94(2-3):216-226. [Link] [DOI:10.1016/S0924-0136(99)00111-9]
39. Seghi RR, Denry IL, Rosenstiel SF. Relative fracture toughness and hardness of new dental ceramics. The Journal of Prosthetic Dentistry. 1995;74(2):145-150. [Link] [DOI:10.1016/S0022-3913(05)80177-5]
40. Vaghefi A, Eyvazian M. Fundamental of probability and engineering statistics. 1st Edition. 2nd Volume. Tehran: Terme; 2009. [Persian] [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.