Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 731-738 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ehsani R, Rahmati A. Numerical Study of Microchannel Blockage Time in the Interaction of Two-Phase Flow with a Particle Using Lattice Boltzmann Method. Modares Mechanical Engineering 2020; 20 (3) :731-738
URL: http://mme.modares.ac.ir/article-15-27354-en.html
1- Thermal Sciences & Fluid Mechanics Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
2- Thermal Sciences & Fluid Mechanics Department, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran , ar_rahmati@kashanu.ac.ir
Abstract:   (4236 Views)
Atherosclerosis is responsible for almost 35% of annual deaths in developed countries. The disease could be due to an artery blockage by the interaction of an externally second phase (air bubbles, medicine carrying capsules) with a particle which is entered to the bloodstream. The effect of some most important affecting parameters on the blockage time of a microchannel due to the impact of a particle and a second moving second phase is investigated using lattice Boltzmann method and with programming Fortran90. The authors tried to mimic the physic of the flow of a small artery by generating the same geometry and changing geometrical and physical parameters. Lee and Lin Lattice Boltzmann multi-phase model is used beside the immersed boundary method. It is investigated the small changes in Capillary flow has no meaningful effect on the interaction of second phase and particle. But, the ratio of particle size to the channel width affects the blockage time in the microchannel. In fact, the blockage time will increase by an increase in the size of the particle. The initial size of the second phase to particle size ratio has the highest effect on the blockage time.


 
Full-Text [PDF 1061 kb]   (1907 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2019/02/20 | Accepted: 2019/07/9 | Published: 2020/03/1

References
1. Dickinson E. Food emulsions and foams: stabilization by particles. Current Opinion in Colloid & Interface Science. 2010;15(1-2):40-49. [Link] [DOI:10.1016/j.cocis.2009.11.001]
2. Sullivan AP, Kilpatrick PK. The effects of inorganic solid particles on water and crude oil emulsion stability. Industrial & Engineering Chemistry Research. 2002;41(14):3389-3404. [Link] [DOI:10.1021/ie010927n]
3. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703-713. [Link] [DOI:10.1039/b711984d]
4. Hunter TN, Pugh RJ, Franks GV, Jameson GJ. The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science. 2008;137(2):57-81. [Link] [DOI:10.1016/j.cis.2007.07.007]
5. Tambe DE, Sharma MM. Factors controlling the stability of colloid-stabilized emulsions: I. An experimental investigation. Journal of Colloid and Interface Science. 1993;157(1):244-253. [Link] [DOI:10.1006/jcis.1993.1182]
6. Jansen F, Harting J. From bijels to Pickering emulsions: A lattice Boltzmann study. Physical Review E. 2011;83(4):046707. [Link] [DOI:10.1103/PhysRevE.83.046707]
7. Rashidi A, Solaimany Nazar A, Radnia H. Application of nanoparticles for chemical enhanced oil recovery. Iranian Journal of Oil & Gas Science and Technology. 2018;7(1):1-19. [Link]
8. New South Wales Environment Protection Authority. Managing particles and improving air quality in NSW. Chatswood: Environment Protection Authority; 2013. [Link]
9. Melchionna S, Pontrelli G, Bernaschi M, Bisson M, Halliday I, Spencer TJ, et al. The Lattice Boltzmann method as a general framework for blood flow modelling and simulations. In: Collins MW, Koenig CS, editors. Micro and nano flow systems for bioanalysis. New York: Springer; 2013. pp. 153-170. [Link] [DOI:10.1007/978-1-4614-4376-6_10]
10. Yang B, Chen Sh, Liu K. Direct numerical simulations of particle sedimentation with heat transfer using the Lattice Boltzmann method. International Journal of Heat and Mass Transfer. 2017;104:419-437. [Link] [DOI:10.1016/j.ijheatmasstransfer.2016.08.032]
11. Munnannur A, Reitz RD. A new predictive model for fragmenting and non-fragmenting binary droplet collisions. International Journal of Multiphase Flow. 2007;33(8):873-896. [Link] [DOI:10.1016/j.ijmultiphaseflow.2007.03.003]
12. Shen Z. Phase transfer in a collision between a droplet and solid spheres [Dissertation]. Newark: New Jersey Institute of Technology; 2008. [Link]
13. Mitra S, Doroodchi E, Pareek V, Joshi JB, Evans GM. Collision behaviour of a smaller particle into a larger stationary droplet. Advanced Powder Technology. 2015;26(1):280-295. [Link] [DOI:10.1016/j.apt.2014.10.008]
14. Bakshi Sh, Roisman IV, Tropea C. Investigations on the impact of a drop onto a small spherical target. Physics of Fluids. 2007;19(3):032102. [Link] [DOI:10.1063/1.2716065]
15. Gac JM, Gradoń L. Lattice-Boltzmann modeling of collisions between droplets and particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:831-836. [Link] [DOI:10.1016/j.colsurfa.2012.11.078]
16. Fakhari A, Bolster D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios. Journal of Computational Physics. 2017;334:620-638. [Link] [DOI:10.1016/j.jcp.2017.01.025]
17. Malgarinos I, Nikolopoulos N, Gavaises M. A numerical study on droplet-particle collision dynamics. International Journal of Heat and Fluid Flow. 2016;61(Part B):499-509. [Link] [DOI:10.1016/j.ijheatfluidflow.2016.06.010]
18. Li Z, Favier J, D'Ortona U, Poncet S. An immersed boundary-lattice Boltzmann method for single-and multi-component fluid flows. Journal of Computational Physics. 2016;304:424-440. [Link] [DOI:10.1016/j.jcp.2015.10.026]
19. Yang B, Chen Sh. Simulation of interaction between a freely moving solid particle and a freely moving liquid droplet by lattice Boltzmann method. International Journal of Heat and Mass Transfer. 2018;127(Part B):474-484. [Link] [DOI:10.1016/j.ijheatmasstransfer.2018.06.112]
20. Chen Sh, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics. 1998;30(1):329-364. [Link] [DOI:10.1146/annurev.fluid.30.1.329]
21. Qian YH, Chen SY. Dissipative and dispersive behaviors of lattice-based models for hydrodynamics. Physical Review E. 2000;61(3):2712-2716. [Link] [DOI:10.1103/PhysRevE.61.2712]
22. Lee T, Lin CL. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics. 2005;206(1):16-47. [Link] [DOI:10.1016/j.jcp.2004.12.001]
23. Swift MR, Orlandini E, Osborn WR, Yeomans JM. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E. 1996;54(5):5041-5052. [Link] [DOI:10.1103/PhysRevE.54.5041]
24. Wu J, Shu C. Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme. Communications in Computational Physics. 2010;7(4):793-812. [Link] [DOI:10.4208/cicp.2009.09.054]
25. Fogelson AL, Peskin CS. A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles. Journal of Computational Physics. 1988;79(1):50-69. [Link] [DOI:10.1016/0021-9991(88)90003-4]
26. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. Journal of Computational Physics. 1999;155(1):96-127. [Link] [DOI:10.1006/jcph.1999.6332]
27. Kang Q, Zhang D, Chen Sh. Displacement of a two-dimensional immiscible droplet in a channel. Physics of Fluids. 2002;14(9):3203-3214. [Link] [DOI:10.1063/1.1499125]
28. Zheng HW, Shu C, Chew YT. A lattice Boltzmann model for multiphase flows with large density ratio. Journal of Computational Physics. 2006;218(1):353-371. [Link] [DOI:10.1016/j.jcp.2006.02.015]
29. Sucker D, Brauer H. Investigation of the flow around transverse cylinders. Wärme-und Stoffübertragung. 1975;8(3):149-158. [German] [Link] [DOI:10.1007/BF01681556]
30. Lima E Silva AL, Silveira-Neto A, Damasceno JJ. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. Journal of Computational Physics. 2003;189(2):351-370. [Link] [DOI:10.1016/S0021-9991(03)00214-6]
31. Link DR, Anna SL, Weitz DA, Stone HA. Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters. 2004;92(5):054503. [Link] [DOI:10.1103/PhysRevLett.92.054503]
32. Chung Ch, Lee M, Char K, Ahn KH, Lee SJ. Droplet dynamics passing through obstructions in confined microchannel flow. Microfluidics and Nanofluidics. 2010;9(6):1151-1163. [Link] [DOI:10.1007/s10404-010-0636-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.