Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 777-786 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gandomkar M, Amini Foroushani J. Experimental and Numerical Investigation of Using Coanda Effect for Producing Underwater Propulsion. Modares Mechanical Engineering 2020; 20 (3) :777-786
URL: http://mme.modares.ac.ir/article-15-27618-en.html
1- Faculty of Mechanics, Malek Ashtar University of Technology, Shahinshahr, Iran , mgd_gandomkar@mut-es.ac.ir
2- Faculty of Mechanics, Malek Ashtar University of Technology, Shahinshahr, Iran
Abstract:   (6288 Views)
In this study, the Coanda effect phenomenon and its advantages to produce underwater propulsion have been evaluated experimentally and numerically. The Coanda effect is the tendency of a jet flow to follow a convex surface. This effect is used to multiply the flow volume rate through a nozzle-diffuser channel. A ring shape jet flow is injected toward the throat, which follows the curved surface along the channel. Surrounding fluid sucked into the nozzle was pushed toward the exit section of the diffuser. The flow is several times more than the jet flow rate therefore it can be used as a propulsion system. A series of experimental Bollard tests were performed to investigate the system behavior with respect to the different size of the gap and the jet flow rate. Also, a numerical model was used for simulating the tests for similar conditions. A good agreement is observed between numerical and experimental results. The numerical tool was then used to predict the amount of thrust where free stream velocity was 2.5m/s. the Comparison of the flow multiplier performance with a regular propeller shows that it is possible to use of the water flow multipliers as underwater propulsion systems with acceptable performance.
Full-Text [PDF 1762 kb]   (2009 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2018/12/1 | Accepted: 2019/07/28 | Published: 2020/03/1

1. Carlton JS. Marine propellers and propulsion. 3rd Edition. Oxford: Butterworth- Heinemann; 2012. pp. 11-28. [Link] [DOI:10.1016/B978-0-08-097123-0.00002-2]
2. Henri C, inventor. Device for deflecting a stream of elastic fluid projected into an elastic fluid [Patent]. United States patent US 2052869. 1936 Sep 1. [Link]
3. Seo DW, Oh J, Jang J. Performance analysis of a horn-type rudder implementing the Coanda effect. International Journal of Naval Architecture and Ocean Engineering. 2017;9(2):177-184. [Link] [DOI:10.1016/j.ijnaoe.2016.09.003]
4. Mazumdar A, Asada HH. Pulse width modulation of water jet propulsion systems using high-speed coanda-effect valves. Journal of Dynamic Systems, Measurement, and Control. 2013;135(5):051019. [Link] [DOI:10.1115/1.4024365]
5. Ahmed RI, Abu Talib AA, Mohd Rafie AM, Djojodihardjo H. Aerodynamics and flight mechanics of MAV based on Coandă effect. Aerospace Science and Technology. 2017;62:136-147. [Link] [DOI:10.1016/j.ast.2016.11.023]
6. Suzuki A, Kondo H, Osakabe M. Water jet propulsion mechanism for low speed AUV. International Symposium on Marine Engineering (ISME), 2017 October 15-19, Tokyo, Japan. Unknown Publisher; 2017. [Link]
7. Schroijen M, Van Tooren M. Mav propulsion system using the coanda effect. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009 August 2-5, Denver, Colorado. Reston: AIAA; 2009. [Link] [DOI:10.2514/6.2009-4809]
8. Geropp D, Odenthal HJ. Drag reduction of motor vehicles by active flow control using the Coanda effect. Experiments in Fluids. 2000;28(1):74-85. [Link] [DOI:10.1007/s003480050010]
9. Trancossi M, Stewart J, Maharshi S, Angeli D. Mathematical model of a constructal Coanda effect nozzle. Journal of Applied Fluid Mechanics. 2016;9(6):2813-2822. [Link] [DOI:10.29252/jafm.09.06.23508]
10. Ahmed RI, Djojodihardjo H, Rahim bin Abu Talib ABD, Abd Hamid MF. Application of Coandă jet for generating lift of micro air vehicles-Preliminary design considerations. Applied Mechanics and Materials. 2014;629:139-144. [Link] [DOI:10.4028/www.scientific.net/AMM.629.139]
11. Lubert C. On some recent applications of the coanda effect. International Journal of Acoustics and Vibration. 2011;16(3):144-153. [Link] [DOI:10.20855/ijav.2011.16.3286]
12. Howe MS. Noise generated by a Coanda wall jet circulation control device. Journal of Sound and Vibration. 2002;249(4):679-700. [Link] [DOI:10.1006/jsvi.2001.3817]
13. Li P, Halliwell NA. Industrial jet noise: Coanda nozzles. Journal of Sound and Vibration. 1985;99(4):475-491. [Link] [DOI:10.1016/0022-460X(85)90535-8]
14. Carpenter PW, Smith C. The aeroacoustics and aerodynamics of high-speed Coanda devices, part 2: Effects of modifications for flow control and noise reduction. Journal of Sound and Vibration. 1997;208(5):803-822. [Link] [DOI:10.1006/jsvi.1997.1203]
15. Lalli F, Bruschi A, Lama R, Liberti L, Mandrone S, Pesarino V. Coanda effect in coastal flows. Coastal Engineering. 2010;57(3):278-289. [Link] [DOI:10.1016/j.coastaleng.2009.10.015]
16. Allery C, Guérin S, Hamdouni A, Sakout A. Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones. Mechanics Research Communications. 2004;31(1):105-120. [Link] [DOI:10.1016/j.mechrescom.2003.08.003]
17. Gregory-Smith DG, Gilchrist AR. The compressible Coanda wall jet-an experimental study of jet structure and breakaway. International Journal of Heat and Fluid Flow. 1987;8(2):156-164. [Link] [DOI:10.1016/0142-727X(87)90019-1]
18. Marton J. Wall roughness effect on Coanda fluid amplifiers. IFAC Proceedings Volumes. 1975;8(1):487-492. [Link] [DOI:10.1016/S1474-6670(17)67505-0]
19. Oshima Y, Kinoshita O. An experimental investigation of the water jet in a Coanda effect fluidic device. IFAC Proceedings Volumes. 1975;8(1):493-502. [Link] [DOI:10.1016/S1474-6670(17)67506-2]
20. Jahanmiri M, Najafi M. Simulation of an unmanned aerial vehicle under the combined coanda and magnus effect. Conferenece on Modern Achievements on Aerospacae and Related Science, 2015 September 11, Tehran, Iran. Tehran: Civilica; 2015. [Persian] [Link]
21. Najafi M, Jahanmiri M. An innovative technique to increase lift of a Coanda UAV. IOSR Journal of Mechanical and Civil Engineering. 2017;14(2):27-35. [Link] [DOI:10.9790/1684-1402012735]
22. Gandomkar M, Amini Foroushani J. The investigation of using water instead of air as fluid in air amplifier system and its performance evaluation for underwater propulsion. 18th Conefrence on Marine Industries, 2016 October 18, Kish Island, Iran. Tehran: Civilica; 2016. [Persian] [Link]
23. Wille R, Fernholz H. Report on the first European Mechanics Colloquium, on the Coanda effect. Journal of Fluid Mechanics. 1965;23(4):801-819. [Link] [DOI:10.1017/S0022112065001702]
24. Meadows FJ, Desmond ET, inventors; AVRO Aircraft Ltd, assignee. Disc-type aircraft with peripheral jet control [Patent]. United States patent US 3022963. 1962 Feb 27. [Link]
25. Boscoianu M, Cîrciu I. An analysis of the efficiency of the functional matching between a flying wing MAV airframe and different types of micro propellers. Incas Bulletin. 2011;3(1):23-29. [Link] [DOI:10.13111/2066-8201.2011.3.1.4]
26. Dragan V. A parametric study of a thick, incompressible flow over a curved surface. Incas Bulletin. 2011;3(4):145-152. [Link] [DOI:10.13111/2066-8201.2011.3.4.13]
27. Dragan V. A new mathematical model for high thickness Coanda effect wall jets. Review of the Air Force Academy. 2013;(1):23-28. [Link]
28. Simpson RG, Ahmed NA, Archer RD. Improvement of a wing's aerodynamic efficiency using Coanda tip jets. Journal of Aircraft. 2000;37(1):183-184. [Link] [DOI:10.2514/2.2579]
29. Florescu D, Florescu I, Nedelcut F, Nedelcu I. Fuselage airstream simulation for a Coandă UAV. Review of the Air Force Academy. 2010;17(2):83-88. [Link]
30. Rašuo B, Mirkov N. On the possibility of using Coanda effect for unmanned aerial vehicles-a numerical investigation. Proceedings in Applied Mathematics and Mechanics (PAMM). 2014;14(1):627-628. [Link] [DOI:10.1002/pamm.201410301]
31. Marques P. Emerging technologies in UAV aerodynamics. International Journal of Unmanned Systems Engineering. 2013;1(1):3-4. [Link] [DOI:10.14323/ijuseng.2013.2]
32. De Lima Lemos R, Vieira RS, Isoldi LA, Oliveira Rocha LA, Dos Santos Pereira M, Dos Santos ED. Numerical analysis of a turbulent flow with Coanda effect in hydrodynamics profiles. FME Transactions. 2017;45:412-420. [Link] [DOI:10.5937/fmet1703412L]
33. Simpson RG, Ahmed NA, Archer RD. Improvement of a wing's aerodynamic efficiency using Coanda tip jets. Journal of Aircraft. 2000;37(1):183-184. [Link] [DOI:10.2514/2.2579]
34. Kumagai I, Takahashi Y, Murai Y. Power-saving device for air bubble generation using a hydrofoil to reduce ship drag: Theory, experiments, and application to ships. Ocean Engineering. 2015;95:183-194. [Link] [DOI:10.1016/j.oceaneng.2014.11.019]
35. Li G, Hu Y, Jin Y, Setoguchi T, Kim HD. Influence of Coanda surface curvature on performance of bladeless fan. Journal of Thermal Science. 2014;23(5):422-431. [Link] [DOI:10.1007/s11630-014-0725-3]
36. Jafari M, Afshin H, Farhanieh B, Bozorgasareh H. Numerical aerodynamic evaluation and noise investigation of a bladeless fan. Journal of Applied Fluid Mechanics. 2015;8(1):133-142. [Link]
37. Aynsley R. Fan size and energy efficiency. International Journal of Ventilation. 2002;1(1):33-38. [Link] [DOI:10.1080/14733315.2002.11683619]
38. Van Hooff T, Blocken B, Defraeye T, Carmeliet JV, Van Heijst GJ. PIV measurements and analysis of transitional flow in a reduced-scale model: Ventilation by a free plane jet with Coanda effect. Building and Environment. 2012;56:301-313. [Link] [DOI:10.1016/j.buildenv.2012.03.020]
39. Robichaud G, Dixon RB, Potturi AS, Cassidy D, Edwards JR, Sohn A, et al. Design, modeling, fabrication, and evaluation of the air amplifier for improved detection of biomolecules by electrospray ionization mass spectrometry. International Journal of Mass Spectrometry. 2011;300(2-3):99-107. [Link] [DOI:10.1016/j.ijms.2010.04.006]
40. nex-flow.com [Internet]. Richmond Hill: Nex Flow; 2019 [ Unknown cited]. Available from: www.nex-flow.com. [Link]
41. ANSYS. ANSYS fluent theory guide [Internet]. Canonsburg: ANSYS; 2009 [Unknown cited]. Available from: https://www.yumpu.com/en/document/view/5683311/ansys-fluent-120-sharcnet. [Link]
42. Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, 1992 January 6-9, Reno, USA. Reston: AIAA; 1992. [Link] [DOI:10.2514/6.1992-439]
43. Roache PJ. Perspective: Validation-What does it mean?. Journal of Fluids Engineering. 2009;131(3):034503. [Link] [DOI:10.1115/1.3077134]
44. Eça L, Hoekstra M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. Journal of Computational Physics. 2014;262:104-130. [Link] [DOI:10.1016/j.jcp.2014.01.006]
45. Eça L, Hoekstra M. Evaluation of numerical error estimation based on grid refinement studies with the method of the manufactured solutions. Computers and Fluids. 2009;38(8):1580-1591. [Link] [DOI:10.1016/j.compfluid.2009.01.003]
46. Cengel YA, Cimbala JM. Fulid mechanics, fundamentals and applications. New York: McGraw-HillHigher Education; 2006. [Link]
47. Barnitsas MM, Ray D, Kinley P. KT, KQ and efficiency curves for the Wageningen B-series propellers. Ann Arbor: University of Michigan; 1981. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.