Volume 19, Issue 9 (September 2019)                   Modares Mechanical Engineering 2019, 19(9): 2183-2192 | Back to browse issues page

XML Persian Abstract Print

1- Mechanical Engineering Department, Engineering Faculty, University of Tehran, Tehran, Iran
2- Mechanical Engineering Department, Engineering Faculty, University of Tehran, Tehran, Iran , aliparvizi@ut.ac.ir
Abstract:   (5524 Views)
Due to higher demands for tailor welded blanks (TWBs) applications in the transportation industry, it is important to understand their forming characteristics in manufacturing processes, especially the deep drawing, in order to produce products with higher qualities. Due to differences between the base materials strength as well as the existence of the welding zone, the formability of TWBs is frequently less than the base metals. The aim of this study is the comparison of weld line displacement and drawing depth in TWBs designed and produced by laser welding and friction stir welding. Laser welding is more appropriate for TWBs production comparing to the other welding processes because of the creation of limited heat affected zone and suitable keyhole. The parameters of the friction stir welding process are very important due to having a high influence on complicated plastic zone variation, the material flow pattern and temperature distribution in TWBs sheets. In this paper, by design experiments, the effect of blank holder force and linear welding velocity on drawing depth and weld line displacement of TWBs have been investigated. Moreover, the harnesses of the weld zone in both processes have been examined. Results show that by increasing the linear velocity of laser welding, the amount of weld line displacement and drawing depth will be increased. Furthermore, the higher linear velocity of friction stir welding will result in the higher weld line displacement and drawing depth. Likewise, the harnesses of the laser welding zone are higher than those ones for friction stir welding zone.
Full-Text [PDF 1041 kb]   (2691 Downloads)    
Article Type: Original Research | Subject: Forming of metal sheets
Received: 2018/11/27 | Accepted: 2019/02/4 | Published: 2019/09/1

1. Kinsey B, Liu Z, Cao J. A novel forming technology for tailor-welded blanks. Journal of Materials Processing Technology. 2000;99(1-3):145-153. [Link] [DOI:10.1016/S0924-0136(99)00412-4]
2. Choi Y, Heo Y, Kim HY, Seo D. Investigations of weld-line movements for the deep drawing process of tailor welded blanks. Journal of Materials Processing Technology. 2000;108(1):1-7. [Link] [DOI:10.1016/S0924-0136(00)00536-7]
3. Heo YM, Wang SH, Kim HY, Seo DG. The effect of the drawbead dimensions on the weld-line movements in the deep drawing of tailor-welded blanks. Journal of Materials Processing Technology. 2001;113(1-3):686-691. [Link] [DOI:10.1016/S0924-0136(01)00672-0]
4. Browne MT, Hillery MT. Optimising the variables when deep-drawing C.R.1 cups. Journal of Materials Processing Technology. 2003;136(1-3):64-71. [Link] [DOI:10.1016/S0924-0136(02)00934-2]
5. Padmanabhan R, Baptista AJ, Oliveira MC, Menezes LF. Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks. Journal of Materials Processing Technology. 2007;184(1-3):288-293. [Link] [DOI:10.1016/j.jmatprotec.2006.11.051]
6. Chen W, Lin GS, Hu SJ. A comparison study on the effectiveness of stepped binder and weld line clamping pins on formability improvement for tailor-welded blanks. Journal of Materials Processing Technology. 2008;207(1-3):204-210. [Link] [DOI:10.1016/j.jmatprotec.2007.12.100]
7. Sanders D, Edwards P, Grant G, Ramulu M, Reynolds A. Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications. Journal of Materials Engineering and Performance. 2010;19(4):515-520. [Link] [DOI:10.1007/s11665-010-9617-1]
8. Sinke J, Zadpoor AA, Benedictus R. Tailor made blanks for the aerospace industry. In: Kinsey BL, Wu X, editors. Tailor welded blanks for advanced manufacturing. Cambridge UK: Woodhead Publishing; 2011. pp. 181-201. [Link] [DOI:10.1533/9780857093851.2.181]
9. Abbasi M, Ketabchi M, Labudde T, Prahl U, Bleck W. New attempt to wrinkling behavior analysis of tailor welded blanks during the deep drawing process. Materials & Design. 2012;40:407-414. [Link] [DOI:10.1016/j.matdes.2012.04.015]
10. Safdarian Korouyeh R, Moslemi Naein H, Liaghat GH. Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods. Journal of Materials Engineering and Performance. 2012;21(10):2053-2061. [Link] [DOI:10.1007/s11665-012-0156-9]
11. Fazli A. Optimum tailor-welded blank design using deformation path length of boundary nodes. International Journal of Automotive Engineering. 2013;3(2):435-445. [Link]
12. Hamidinejad SM, Hasanniya MH, Salari N, Valizadeh E. CO2 laser welding of interstitial free galvanized steel sheets used in tailor welded blanks. The International Journal of Advanced Manufacturing Technology. 2013;64(1-4):195-206. [Link] [DOI:10.1007/s00170-012-4005-7]
13. Safdarian Korouyeh R, Moslemi Naeini H, Torkamany MJ, Liaghat GH. Experimental and theoretical investigation of thickness ratio effect on the formability of tailor welded blank. Optics & Laser Technology. 2013;51:24-31. [Link] [DOI:10.1016/j.optlastec.2013.02.016]
14. Song Y, Hua L. Influences of thickness ratio of base sheets on formability of tailor welded blanks. Procedia Engineering. 2014;81:730-735. [Link] [DOI:10.1016/j.proeng.2014.10.068]
15. Dias JS, Chuvas TC, Cindra Fonseca MDP. Evaluation of residual stresses and mechanical properties of IF steel welded joints by laser and plasma processes. Materials Research. 2016;19(3):721-727. [Link] [DOI:10.1590/1980-5373-MR-2015-0558]
16. Bandyopadhyay K, Panda SK, Saha P, Padmanabham G. Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation. Journal of Materials Processing Technology. 2015;217:48-64. [Link] [DOI:10.1016/j.jmatprotec.2014.10.022]
17. Satya Suresh VVN, Regalla SP, Gupta AK, Padmanabham G. Weld line shift in the case of tailor welded blanks subjected to differential strengths with respect to TIG and laser welding. Materials Today Proceedings. 2015;2(4-5):3501-3510. [Link] [DOI:10.1016/j.matpr.2015.07.326]
18. Moradi M, Ghoreishi M, Rahmani A. Numerical and experimental study of geometrical dimensions on laser-TIG hybrid welding of stainless steel 1.4418. Journal of Modern Processes in Manufacturing and Production. 2016;5(2):21-31. [Link]
19. Moradi MM, Jamshidi Aval H, Jamaati R. Experimental investigation on the effect of friction stir welding process parameters in dissimilar joining of AA2024-T351 and AA6061-T6 aluminum alloys. Modares Mechanical Engineering. 2016;16(9):394-402. [Persian] [Link]
20. Wang H, Feng B, Song G, Liu L. Laser-arc hybrid welding of high-strength steel and aluminum alloy joints with brass filler. Materials and Manufacturing Processes. 2018;33(7):735-742. [Link] [DOI:10.1080/10426914.2017.1364762]
21. Abdullah ME, Abdel-Magied RK, Elsheikh MN. Experimental investigation of formability of Al-1050 tailor-welded blanks. The International Journal of Advanced Manufacturing Technology. 2017;89(1-4):791-801. [Link] [DOI:10.1007/s00170-016-9147-6]
22. Barbieri G, Cognini F, Moncada M, Rinaldi A, Lapi G. Welding of automotive aluminum alloys by laser wobbling processing. Materials Science Forum. 2017;879:1057-1062. [Link] [DOI:10.4028/www.scientific.net/MSF.879.1057]
23. Moradi M, Ghoreishi M, Khorram A. Process and outcome comparison between laser, Tungsten Inert Gas (TIG) and laser-TIG hybrid welding. Lasers in Engineering Old City Publishing. 2018;39(3-6):379-391. [Link]
24. Faraji AH, Goodarzi M, Seyedein SH, Maletta C. Investigation of the capability of hybrid Nd:YAG - TIG welding against Nd:YAG laser welding process for aluminum foam sandwich panels. Modares Mechanical Engineering. 2017;16(11):349-356. [Persian] [Link]
25. Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Optics and Lasers in Engineering. 2017;96:1-6. [Link] [DOI:10.1016/j.optlaseng.2017.04.004]
26. Moradi M, Ghoreishi M. Influences of laser welding parameters on the geometric profile of NI-base superalloy Rene 80 weld-bead. The International Journal of Advanced Manufacturing Technology. 2011;55(1-4):205-215. [Link] [DOI:10.1007/s00170-010-3036-1]
27. Parente M, Safdarian R, Santos AD, Loureiro A, Vilaca P, Natal Jorge RM. A study on the formability of aluminum tailor welded blanks produced by friction stir welding. The International Journal of Advanced Manufacturing Technology. 2016;83(9-12):2129-2141. [Link] [DOI:10.1007/s00170-015-7950-0]
28. Safdarian Korouyeh R, Moslemi Naeini H, Liaghat GH, Kasaei MM. Investigation of weld line movement in tailor welded blank forming. Advanced Materials Research. 2012;445:39-44. https://doi.org/10.4028/www.scientific.net/AMR.445.39 [Link] [DOI:10.4028/scientific5/AMR.445.39]
29. Safdarian R. The effects of strength ratio on the forming limit diagram of tailor-welded blanks. Ironmaking & Steelmaking. 2018;45(1):17-24. [Link] [DOI:10.1080/03019233.2016.1235371]
30. Safdarian Korouyeh R, Moslemi Naeini H, Torkamany MJ, Sabaghzadee J. Effect of laser welding parameters on forming behavior of tailor welded blanks. Advanced Materials Research. 2012;445:406-411. https://doi.org/10.4028/scientific5/AMR.445.406 [Link] [DOI:10.4028/www.scientific.net/AMR.445.406]
31. Safdarian R, Habibian Tavan O. Effect of friction stir welding parameters on the ultimate tensile strength of Al-Cu tailor welded blanks. Iranian Journal of Materials Forming. 2018;5(2):84-95. [Link]
32. Leal RM, Chaparro BM, Antunes JM, Vilaça P, Rodrigues DM, Loureiro A. Mechanical behaviour of FSW aluminium tailored blanks. Materials Science Forum. 2008;587-588:961-965. [Link] [DOI:10.4028/www.scientific.net/MSF.587-588.961]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.