1. Ghalamchi M, Kasaeian A, Ghalamchi M, Hajiseyed Mirzahosseini AR. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renewable Energy. 2016;91:477-483. [
Link] [
DOI:10.1016/j.renene.2016.01.091]
2. Ghalamchi M, Kasaeian A, Ghalamchi M. Experimental study of geometrical and climate effects on the performance of a small solar chimney. Renewable and Sustainable Energy Reviews. 2015;43:425-431. [
Link] [
DOI:10.1016/j.rser.2014.11.068]
3. Haaf W, Friedrich K, Mayr G, Schlaich J. Solar chimneys part I: Principle and construction of the pilot plant in Manzanares.International Journal of Solar Energy. 1983;2(1):3-20. [
Link] [
DOI:10.1080/01425918308909911]
4. Haaf W. Solar chimneys part II: Preliminary test results from the Manzanares pilot plant. International Journal of Solar Energy. 1984;2(2):141-161. [
Link] [
DOI:10.1080/01425918408909921]
5. Sangi R, Amidpour M, Hosseinizadeh B. Modeling and numerical simulation of solar chimney power plants. Solar Energy. 2011;85(5);829-838. [
Link] [
DOI:10.1016/j.solener.2011.01.011]
6. Dehghani S, Mohammadi AH. Optimum dimension of geometric parameters of solar chimney power plants - a multi-objective optimization approach. Solar Energy. 2014;105:603-612. [
Link] [
DOI:10.1016/j.solener.2014.04.006]
7. Patel SK, Prasad D, Rafiuddin Ahmed M. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Conversion and Management. 2014;77:424-431. [
Link] [
DOI:10.1016/j.enconman.2013.09.056]
8. Vieira RS, Petry AP, Rocha LAO, Isoldi LA, Dos Santos ED. Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design. Renewable Energy. 2017;109:222-234. [
Link] [
DOI:10.1016/j.renene.2017.03.007]
9. Maia CB, Ferreira AG, Valle RM, Cortez MFB. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Computers & Fluids. 2009;38(3);625-636. [
Link] [
DOI:10.1016/j.compfluid.2008.06.005]
10. Li JY, Guo PH, Wang Y. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renewable Energy. 2012;47:21-28. [
Link] [
DOI:10.1016/j.renene.2012.03.018]
11. Yoon M, Hwang J, Lee J, Sung HJ, Kim J. Large-scale motions in a turbulent channel flow with the slip boundary condition. International Journal of Heat and Fluid Flow. 2016;61(Pt A):96-107. [
Link] [
DOI:10.1016/j.ijheatfluidflow.2016.03.003]
12. Derby MM, Chatterjee A, Peles Y, Jensen MK. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. International Journal of Heat and Mass Transfer. 2014;68:151-160. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2013.09.024]
13. A. Sohankar, M. Riahi, E. Shirani, Numerical investigation of heat transfer and pressure drop in a rotating U-shaped hydrophobic microchannel with slip flow and temperature jump boundary conditions. Applied Thermal Engineering. 2017;117:308-321. [
Link] [
DOI:10.1016/j.applthermaleng.2017.02.036]
14. Ayadi A, Nasraoui H, Bouabidi A, Driss Z, Bsisa M, Salah Abid M. Effect of the turbulence model on the simulation of the air flow in a solar chimney. International Journal of Thermal Sciences. 2018;130:423-434. [
Link] [
DOI:10.1016/j.ijthermalsci.2018.04.038]
15. FLUENT. Documentation Manual - FLUENT 17.0. [Internet]. Unknown City: Unknown Publisher; Unknown Year [Unknown cited]. Available from: Not Found [
Link]
16. Koonsrisuk A, Chitsomboon T. Mathematical modeling of solar chimney power plants. Energy. 2013;51:314-322. [
Link] [
DOI:10.1016/j.energy.2012.10.038]
17. Bardina JE, Huang PG, Coakley TJ. NASA-TM-110446: Turbulence modeling validation, testing, and development [Internet]. Washington DC: NASA; 1997 [cited 2018 Sept 03]. Available from: https://ntrs.nasa.gov/search.jsp?R=19970017828 [
Link]